summaryrefslogtreecommitdiffstats
path: root/approximation.tex
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2013-06-28 00:16:44 +0200
committerThibaut Horel <thibaut.horel@gmail.com>2013-06-28 00:16:44 +0200
commit07d48e21fb6fc62b1a85b9d80c25560529a9a0b5 (patch)
tree08d636c66b2933c370039bbd0bfb886b34b25505 /approximation.tex
parentd5f4afbbf188d745439e0e15b1857fb696477d70 (diff)
downloadrecommendation-07d48e21fb6fc62b1a85b9d80c25560529a9a0b5.tar.gz
Moving the proofs to the appendix, improving the flow
Diffstat (limited to 'approximation.tex')
-rw-r--r--approximation.tex602
1 files changed, 64 insertions, 538 deletions
diff --git a/approximation.tex b/approximation.tex
index 926ca1d..81a6d0c 100644
--- a/approximation.tex
+++ b/approximation.tex
@@ -1,16 +1,27 @@
-\EDP{} is NP-hard, but designing a mechanism for this problem will involve
-being able to find an approximation $\tilde{L}^*(c)$ of $OPT$ with the
-following three properties: first, it must be non-decreasing along
-coordinate-axis, second it must have a constant approximation ratio to $OPT$
-and finally, it must be computable in polynomial time.
+As noted above, \EDP{} is NP-hard. Designing a mechanism for this problem, as
+we will see in Section~\ref{sec:mechanism}, will involve being able to find an approximation of its optimal value
+$OPT$ defined in \eqref{eq:non-strategic}. In addition to being computable in
+polynomial time and having a bounded approximation ratio to $OPT$, we will also
+require this approximation to be non-increasing in the following sense:
-This approximation will be obtained by introducing a concave optimization
+\begin{definition}
+Let $f$ be a function from $\reals^n$ to $\reals$. We say that $f$ is
+\emph{non-decreasing (resp. non-increasing) along the $i$-th coordinate} iff:
+\begin{displaymath}
+\forall x\in\reals^n,\;
+t\mapsto f(x+ te_i)\; \text{is non-decreasing (resp. non-increasing)}
+\end{displaymath}
+where $e_i$ is the $i$-th canonical basis vector of $\reals^n$.
+
+We say that $f$ is \emph{non-decreasing} (resp. \emph{non-increasing}) iff it
+is non-decreasing (resp. non-increasing) along all coordinates.
+\end{definition}
+
+
+Such an approximation will be obtained by introducing a concave optimization
problem with a constant approximation ratio to \EDP{}
-(Proposition~\ref{prop:relaxation}). Using Newton's method, it is then
-possible to solve this concave optimization problem to an arbitrary precision.
-However, this approximation breaks the monotonicity of the approximation.
-Finding a monotone approximate solution to the concave problem will be the
-object of (Section~\ref{sec:monotonicity}).
+(Proposition~\ref{prop:relaxation}) and then showing how to approximately solve
+this problem in a monotone way.
\subsection{A concave relaxation of \EDP}\label{sec:concave}
@@ -41,14 +52,14 @@ guarantees for an interesting class of optimization problems through the
\emph{pipage rounding} framework, which has been successfully applied
in \citeN{chen, singer-influence}.
-However, for the specific function $V$ defined in \eqref{modified}, the
+For the specific function $V$ defined in \eqref{modified}, the
multi-linear extension cannot be computed (and \emph{a fortiori} maximized) in
polynomial time. Hence, we introduce a new function $L$:
\begin{equation}\label{eq:our-relaxation}
\forall\,\lambda\in[0,1]^n,\quad L(\lambda) \defeq
\log\det\left(I_d + \sum_{i\in\mathcal{N}} \lambda_i x_i\T{x_i}\right),
\end{equation}
-Note that the relaxation $L$ that we introduced in \eqref{eq:our-relaxation},
+Note that this relaxation,
follows naturally from the \emph{multi-linear} extension by swapping the
expectation and $V$ in \eqref{eq:multi-linear}:
\begin{displaymath}
@@ -64,330 +75,73 @@ a relaxation. We define:
\leq B\right\}
\end{equation}
-The key property of the relaxation $L$, which is our main technical result, is
-that it has constant approximation ratios to the multi-linear extension $F$.
-
-\begin{lemma}\label{lemma:relaxation-ratio}
- % The following inequality holds:
-For all $\lambda\in[0,1]^{n},$
- %\begin{displaymath}
- $ \frac{1}{2}
- \,L(\lambda)\leq
- F(\lambda)\leq L(\lambda)$.
- %\end{displaymath}
-\end{lemma}
-\begin{proof}
- The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}(\lambda)}$ follows by the concavity of the $\log\det$ function.
- To show the lower bound,
- we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
- F(\lambda)/\partial_i L(\lambda)$, where
- $\partial_i\, \cdot$ denotes the partial derivative with respect to the
- $i$-th variable.
-
- Let us start by computing the derivatives of $F$ and
- $L$ with respect to the $i$-th component.
- Observe that
- \begin{displaymath}
- \partial_i P_\mathcal{N}^\lambda(S) = \left\{
- \begin{aligned}
- & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\;
- i\in S, \\
- & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
- i\in \mathcal{N}\setminus S. \\
- \end{aligned}\right.
- \end{displaymath}
- Hence,
- \begin{displaymath}
- \partial_i F(\lambda) =
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
- - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S).
- \end{displaymath}
- Now, using that every $S$ such that $i\in S$ can be uniquely written as
- $S'\cup\{i\}$, we can write:
- \begin{displaymath}
- \partial_i F(\lambda) =
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\})
- - V(S)\big).
- \end{displaymath}
- The marginal contribution of $i$ to
- $S$ can be written as
-\begin{align*}
-V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d
- + \T{X_S}X_S + x_i\T{x_i})
- - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\\
- & = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d +
-\T{X_S}X_S)^{-1})
- = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)
-\end{align*}
-where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the
-Sylvester's determinant identity~\cite{sylvester}.
-% $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$.
-Using this,
- \begin{displaymath}
- \partial_i F(\lambda) = \frac{1}{2}
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
- \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
- \end{displaymath}
- The computation of the derivative of $L$ uses standard matrix
- calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in
- \mathcal{N}}\lambda_ix_i\T{x_i}$,
- \begin{displaymath}
- \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda)
- + hx_i\T{x_i}\big)
- =\det \tilde{A}(\lambda)\big(1+
- h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big).
- \end{displaymath}
- Hence,
- \begin{displaymath}
- \log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda)
- + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h),
- \end{displaymath}
- which implies
- \begin{displaymath}
- \partial_i L(\lambda)
- =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i.
- \end{displaymath}
-
-For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if
-$A-B$ is positive definite (positive semi-definite). This order allows us to
-define the notion of a \emph{decreasing} as well as \emph{convex} matrix
-function, similarly to their real counterparts. With this definition, matrix
-inversion is decreasing and convex over symmetric positive definite
-matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}).
-In particular,
-\begin{gather*}
- \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
-\end{gather*}
-as $A(S)\preceq A(S\cup\{i\})$. Observe that
- % \begin{gather*}
- % \forall
-$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and
- % ,\\
- $P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$.
- %\end{gather*}
- Hence,
- \begin{align*}
- \partial_i F(\lambda)
- % & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
- & \geq \frac{1}{4}
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
- \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
- &\hspace{-3.5em}+\frac{1}{4}
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})
- \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
- &\geq \frac{1}{4}
- \sum_{S\subseteq\mathcal{N}}
- P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big).
- \end{align*}
- Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq
- \norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$.
- Hence,
- \begin{displaymath}
- \partial_i F(\lambda) \geq
- \frac{1}{4}
- \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i.
- \end{displaymath}
- Finally, using that the inverse is a matrix convex function over symmetric
- positive definite matrices:
- \begin{displaymath}
- \partial_i F(\lambda) \geq
- \frac{1}{4}
- \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
- = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i
- = \frac{1}{2}
- \partial_i L(\lambda).
- \end{displaymath}
-
-Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases.
- First, if the minimum of the ratio
- $F(\lambda)/L(\lambda)$ is attained at a point interior to the hypercube, then it is
- a critical point, \emph{i.e.}, $\partial_i \big(F(\lambda)/L(\lambda)\big)=0$ for all $i\in \mathcal{N}$; hence, at such a critical point:
- \begin{equation}\label{eq:lhopital}
- \frac{F(\lambda)}{L(\lambda)}
- = \frac{\partial_i F(\lambda)}{\partial_i
- L(\lambda)} \geq \frac{1}{2}.
- \end{equation}
- Second, if the minimum is attained as
- $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
- \begin{displaymath}
- \frac{F(\lambda)}{L(\lambda)}
- \sim_{\lambda\rightarrow 0}
- \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)}
- {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)}
- \geq \frac{1}{2},
- \end{displaymath}
- \emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$.
- Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is
- defined as a subset of the hypercube where one of the variable is fixed to
- 0 or 1), without loss of generality, we can assume that the minimum is
- attained on the face where the $n$-th variable has been fixed
- to 0 or 1. Then, either the minimum is attained at a point interior to the
- face or on a boundary of the face. In the first sub-case, relation
- \eqref{eq:lhopital} still characterizes the minimum for $i< n$.
- In the second sub-case, by repeating the argument again by induction, we see
- that all is left to do is to show that the bound holds for the vertices of
- the cube (the faces of dimension 1). The vertices are exactly the binary
- points, for which we know that both relaxations are equal to the value
- function $V$. Hence, the ratio is equal to 1 on the vertices.
-\end{proof}
-
-We now prove that $F$ admits the following exchange property: let
-$\lambda$ be a feasible element of $[0,1]^n$, it is possible to trade one
-fractional component of $\lambda$ for another until one of them becomes
-integral, obtaining a new element $\tilde{\lambda}$ which is both feasible and
-for which $F(\tilde{\lambda})\geq F(\lambda)$. Here, by feasibility of a point
-$\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n
-\lambda_i c_i \leq B$. This rounding property is referred to in the literature
-as \emph{cross-convexity} (see, \emph{e.g.}, \cite{dughmi}), or
-$\varepsilon$-convexity by \citeN{pipage}.
-
-\begin{lemma}[Rounding]\label{lemma:rounding}
- For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible
- $\bar{\lambda}\in[0,1]^{n}$ such that at most one of its components is
- fractional %, that is, lies in $(0,1)$ and:
- and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$.
-\end{lemma}
-\begin{proof}
- We give a rounding procedure which, given a feasible $\lambda$ with at least
- two fractional components, returns some feasible $\lambda'$ with one less fractional
- component such that $F(\lambda) \leq F(\lambda')$.
-
- Applying this procedure recursively yields the lemma's result.
- Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
- fractional components of $\lambda$ and let us define the following
- function:
- \begin{displaymath}
- F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
- \quad\textrm{where} \quad
- \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
- \end{displaymath}
- It is easy to see that if $\lambda$ is feasible, then:
- \begin{equation}\label{eq:convex-interval}
- \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
- \frac{c_j}{c_i}\Big)\Big],\;
- \lambda_\varepsilon\;\;\textrm{is feasible}
- \end{equation}
- Furthermore, the function $F_\lambda$ is convex; indeed:
- \begin{align*}
- F_\lambda(\varepsilon)
- & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
- (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
- & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})
- + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
- & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]
- \end{align*}
- Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
- \begin{displaymath}
- \frac{c_i}{c_j}\mathbb{E}_{S'\sim
- P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
- V(S'\cup\{i\})+V(S'\cup\{i\})\\
- -V(S'\cup\{i,j\})-V(S')\Big]
- \end{displaymath}
- which is positive by submodularity of $V$. Hence, the maximum of
- $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
- attained at one of its limit, at which either the $i$-th or $j$-th component of
- $\lambda_\varepsilon$ becomes integral.
-\end{proof}
-
-Using Lemma~\ref{lemma:rounding}, we can relate the multi-linear extension to
-$OPT$, and Lemma~\ref{lemma:relaxation-ratio} relates our relaxation $L$ to the
-multi-linear extension. Putting these together gives us the following result:
+The key property of our relaxation $L$ is that it has a bounded approximation
+ratio to the multi-linear relaxation $F$. This is one of our main technical
+contributions and is stated and proved in Lemma~\ref{lemma:relaxation-ratio}
+found in Appendix. Moreover, the multi-linear relaxation $F$ has an exchange
+property (see Lemma~\ref{lemma:rounding}) which allows us to relate its value to
+$OPT$ through rounding. Together, these properties give the following
+proposition which is also proved in the Appendix.
\begin{proposition}\label{prop:relaxation}
$L^*_c \leq 2 OPT + 2\max_{i\in\mathcal{N}}V(i)$.
\end{proposition}
-\begin{proof}
-Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that
-$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
-Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
-one fractional component such that
-\begin{equation}\label{eq:e1}
- L(\lambda^*) \leq 2 F(\bar{\lambda}).
-\end{equation}
- Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
- denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
- By definition of the multi-linear extension $F$:
- \begin{displaymath}
- F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}).
- \end{displaymath}
- By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence,
- \begin{displaymath}
- F(\bar{\lambda}) \leq V(S) + V(i).
- \end{displaymath}
- Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
- $V(S)\leq OPT$. Hence,
- \begin{equation}\label{eq:e2}
- F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i).
- \end{equation}
- Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma.
-\end{proof}
-
-\subsection{A monotonous estimator}\label{sec:monotonicity}
+\subsection{Solving a convex problem monotonously}\label{sec:monotonicity}
-The $\log\det$ function is concave and self-concordant (see
-\cite{boyd2004convex}), in this case, the analysis of the barrier method in
-in \cite{boyd2004convex} (Section 11.5.5) can be summarized in the following
-lemma:
+Note, that the feasible set in Problem~\eqref{eq:primal} increases (for the
+inclusion) when the cost decreases. As a consequence, $c\mapsto L^*_c$ is
+non-increasing.
-\begin{lemma}\label{lemma:barrier}
-For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate
-approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$.
-\end{lemma}
+Furthermore, \eqref{eq:primal} being a convex optimization problem, using
+standard convex optimization algorithms (Lemma~\ref{lemma:barrier} gives
+a formal statement for our specific problem) we can compute
+a $\varepsilon$-accurate approximation of its optimal value as defined below.
-Note however that even though $L^*_c$ is non-decreasing along coordinate axis
-(if one of the cost decreases, then the feasible set of \eqref{eq:primal}
-increases), this will not necessarily be the case for an $\varepsilon$-accurate
-approximation of $L^*_c$ and Lemma~\ref{lemma:barrier} in itself is not
-sufficient to provide an approximation satisfying the
-properties requested at the beginning of Section~\ref{sec:approximation}.
+\begin{definition}
+$a$ is an $\varepsilon$-accurate approximation of $b$ iff $|a-b|\leq \varepsilon$.
+\end{definition}
-The estimator we will construct in this section will have a slightly weaker
-form of coordinate-wise monotonicity: \emph{$\delta$-monotonicity}.
+Note however that an $\varepsilon$-accurate approximation of a non-increasing
+function is not in general non-increasing itself. The goal of this section is
+to approximate $L^*_c$ while preserving monotonicity. The estimator we
+construct has a weaker form of monotonicity that we call
+\emph{$\delta$-monotonicity}.
\begin{definition}
Let $f$ be a function from $\reals^n$ to $\reals$, we say that $f$ is
-\emph{$\delta$-increasing} iff:
-\begin{displaymath}
+\emph{$\delta$-increasing along the $i$-th coordinate} iff:
+\begin{equation}\label{eq:dd}
\forall x\in\reals^n,\;
\forall \mu\geq\delta,\;
- \forall i\in\{1,\ldots,n\},\;
f(x+\mu e_i)\geq f(x)
-\end{displaymath}
-where $e_i$ is the $i$-th basis vector of $\reals^n$. We define
-\emph{$\delta$-decreasing} functions similarly.
+\end{equation}
+where $e_i$ is the $i$-th canonical basis vector of $\reals^n$. By extension,
+$f$ is $\delta$-increasing iff it is $\delta$-increasing along all coordinates.
+
+We define \emph{$\delta$-decreasing} functions by reversing the inequality in
+\eqref{eq:dd}.
\end{definition}
-For the ease of presentation, we normalize the costs by dividing them by the
-budget $B$ so that the budget constraint in \eqref{eq:primal} now reads
-$\T{c}\lambda\leq 1$. We consider a perturbation of \eqref{eq:primal} by
-introducing:
+We consider a perturbation of \eqref{eq:primal} by introducing:
\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal}
L^*_c(\alpha) \defeq \max_{\lambda\in[\alpha, 1]^{n}}
\left\{L(\lambda) \Big| \sum_{i=1}^{n} \lambda_i c_i
- \leq 1\right\}
+ \leq B\right\}
\end{equation}
Note that we have $L^*_c = L^*_c(0)$. We will also assume that
-$\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at least one
-feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$.
-
-The $\delta$-decreasing approximation of $L^*_c$ is obtained by computing an
-approximate solution of \eqref{eq:perturbed-primal}.
+$\alpha<\frac{1}{nB}$ so that \eqref{eq:perturbed-primal} has at least one
+feasible point: $(\frac{1}{nB},\ldots,\frac{1}{nB})$. By computing
+an approximation of $L^*_c(\alpha)$ as in Algorithm~\ref{alg:monotone}, we
+obtain a $\delta$-decreasing approximation of $L^*_c$.
-\begin{algorithm}[h]
+\begin{algorithm}[t]
\caption{}\label{alg:monotone}
\begin{algorithmic}[1]
- \State $\alpha \gets \varepsilon(\delta+n^2)^{-1} $
+ \State $\alpha \gets \varepsilon B^{-1}(\delta+n^2)^{-1} $
\State Compute a $\frac{1}{2^{n+1}}\alpha\delta b$-accurate approximation of
- $L^*_c(\alpha)$ using the barrier method
+ $L^*_c(\alpha)$
\end{algorithmic}
\end{algorithm}
@@ -399,231 +153,3 @@ approximate solution of \eqref{eq:perturbed-primal}.
\end{proposition}
-We show that the optimal value of \eqref{eq:perturbed-primal} is close to the
-optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being
-well-behaved with respect to changes of the cost
-(Lemma~\ref{lemma:monotonicity}). These lemmas together imply
-Proposition~\ref{prop:monotonicity}.
-
-
-\begin{lemma}\label{lemma:derivative-bounds}
- Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
- \begin{displaymath}
- \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
- \end{displaymath}
-\end{lemma}
-
-\begin{proof}
- Let us define:
- \begin{displaymath}
- S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
- \quad\mathrm{and}\quad
- S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
- \end{displaymath}
-
- We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
- $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
- is the right-hand side of the lemma.
-
- For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
- $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
-
- Using the Sherman-Morrison formula, for all $k\geq 1$:
- \begin{displaymath}
- \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
- - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
- \end{displaymath}
-
- By the Cauchy-Schwarz inequality:
- \begin{displaymath}
- (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
- \end{displaymath}
-
- Hence:
- \begin{displaymath}
- \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
- \end{displaymath}
-
- But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
- $0\leq a\leq 1$, so:
- \begin{displaymath}
- \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
- \end{displaymath}
-
- By induction:
- \begin{displaymath}
- \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
- \end{displaymath}
-
- Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
- of the lemma's inequality.
-\end{proof}
-
-Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}:
-
-\begin{displaymath}
- \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)
- + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda)
-\end{displaymath}
-so that:
-\begin{displaymath}
- L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
-\end{displaymath}
-Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.
-
-Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
-\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
-dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
-\begin{gather*}
- \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
- \mu_i^*(\lambda_i^* - \alpha) = 0\\
- \nu_i^*(1 - \lambda_i^*) = 0
-\end{gather*}
-
-\begin{lemma}\label{lemma:proximity}
-We have:
-\begin{displaymath}
- L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c
-\end{displaymath}
-In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$.
-\end{lemma}
-
-\begin{proof}
- $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the
- maximum value of the $L$ function over a set-decreasing domain, which gives
- the rightmost inequality.
-
- Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
- \begin{displaymath}
- L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
- \end{displaymath}
-
- Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
- = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
- - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
- problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
- \geq L(\lambda)$. Hence,
- \begin{displaymath}
- L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
- \end{displaymath}
- for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$:
- \begin{equation}\label{eq:local-1}
- L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
- \end{equation}
-
- Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
- \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
- $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that:
- \begin{displaymath}
- M \subseteq \{i|\lambda_i^* = \alpha\}
- \end{displaymath}
-
-
- Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.
-
- We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
- = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
- which would increase the value of the objective function and contradict the
- optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
- $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again
- contradicts the optimality of $\lambda^*$. Let us write:
- \begin{displaymath}
- 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
- \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i
- \end{displaymath}
- That is:
- \begin{equation}\label{local-2}
- \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n}
- \end{equation}
- where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
- KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
- \begin{equation}\label{local-3}
- \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*
- \end{equation}
- since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.
-
- Furthermore, using the KKT conditions again, we have that:
- \begin{equation}\label{local-4}
- \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
- = \frac{1}{\max_{i\in\bar{M}} c_i}
- \end{equation}
- where the last inequality uses Lemma~\ref{lemma:derivative-bounds}.
-
- Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
- \begin{displaymath}
- \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2
- \end{displaymath}
-
- This implies that:
- \begin{displaymath}
- \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2
- \end{displaymath}
- which in addition to \eqref{eq:local-1} proves the lemma.
-\end{proof}
-
-\begin{lemma}\label{lemma:monotonicity}
- If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
- \begin{displaymath}
- L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n}
- \end{displaymath}
-\end{lemma}
-
-\begin{proof}
- Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that:
- \begin{displaymath}
- \mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
- \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta,
- \end{displaymath}
- we get similarly to Lemma~\ref{lemma:proximity}:
- \begin{displaymath}
- L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta
- \end{displaymath}
- for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
- \begin{displaymath}
- L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta
- \end{displaymath}
- since $\lambda_i^*\geq \alpha$.
-
- Using the KKT conditions for $(P_{c', \alpha})$, we can write:
- \begin{displaymath}
- \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
- \end{displaymath}
- with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof.
-\end{proof}
-
-
-\subsubsection*{End of the proof of Proposition~\ref{prop:monotonicity}}
-
-Let $\tilde{L}^*_c$ be the approximation computed by
-Algorithm~\ref{alg:monotone}.
-\begin{enumerate}
- \item using Lemma~\ref{lemma:proximity}:
-\begin{displaymath}
- |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c|
- \leq \alpha\delta + \alpha n^2 = \varepsilon
-\end{displaymath}
-which proves the $\varepsilon$-accuracy.
-
-\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq
- c_i-\delta$, then:
-\begin{displaymath}
- \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}}
- \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}}
- \geq \tilde{L}^*_c
-\end{displaymath}
-where the first and inequality come from the accuracy of the approximation, and
-the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
-
-\item the accuracy of the approximation $\tilde{L}^*_c$ is:
-\begin{displaymath}
- A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)}
-\end{displaymath}
-
-Note that:
-\begin{displaymath}
- \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg)
-\end{displaymath}
-Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
-\end{enumerate}