diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-28 00:16:44 +0200 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-28 00:16:44 +0200 |
| commit | 07d48e21fb6fc62b1a85b9d80c25560529a9a0b5 (patch) | |
| tree | 08d636c66b2933c370039bbd0bfb886b34b25505 /approximation.tex | |
| parent | d5f4afbbf188d745439e0e15b1857fb696477d70 (diff) | |
| download | recommendation-07d48e21fb6fc62b1a85b9d80c25560529a9a0b5.tar.gz | |
Moving the proofs to the appendix, improving the flow
Diffstat (limited to 'approximation.tex')
| -rw-r--r-- | approximation.tex | 602 |
1 files changed, 64 insertions, 538 deletions
diff --git a/approximation.tex b/approximation.tex index 926ca1d..81a6d0c 100644 --- a/approximation.tex +++ b/approximation.tex @@ -1,16 +1,27 @@ -\EDP{} is NP-hard, but designing a mechanism for this problem will involve -being able to find an approximation $\tilde{L}^*(c)$ of $OPT$ with the -following three properties: first, it must be non-decreasing along -coordinate-axis, second it must have a constant approximation ratio to $OPT$ -and finally, it must be computable in polynomial time. +As noted above, \EDP{} is NP-hard. Designing a mechanism for this problem, as +we will see in Section~\ref{sec:mechanism}, will involve being able to find an approximation of its optimal value +$OPT$ defined in \eqref{eq:non-strategic}. In addition to being computable in +polynomial time and having a bounded approximation ratio to $OPT$, we will also +require this approximation to be non-increasing in the following sense: -This approximation will be obtained by introducing a concave optimization +\begin{definition} +Let $f$ be a function from $\reals^n$ to $\reals$. We say that $f$ is +\emph{non-decreasing (resp. non-increasing) along the $i$-th coordinate} iff: +\begin{displaymath} +\forall x\in\reals^n,\; +t\mapsto f(x+ te_i)\; \text{is non-decreasing (resp. non-increasing)} +\end{displaymath} +where $e_i$ is the $i$-th canonical basis vector of $\reals^n$. + +We say that $f$ is \emph{non-decreasing} (resp. \emph{non-increasing}) iff it +is non-decreasing (resp. non-increasing) along all coordinates. +\end{definition} + + +Such an approximation will be obtained by introducing a concave optimization problem with a constant approximation ratio to \EDP{} -(Proposition~\ref{prop:relaxation}). Using Newton's method, it is then -possible to solve this concave optimization problem to an arbitrary precision. -However, this approximation breaks the monotonicity of the approximation. -Finding a monotone approximate solution to the concave problem will be the -object of (Section~\ref{sec:monotonicity}). +(Proposition~\ref{prop:relaxation}) and then showing how to approximately solve +this problem in a monotone way. \subsection{A concave relaxation of \EDP}\label{sec:concave} @@ -41,14 +52,14 @@ guarantees for an interesting class of optimization problems through the \emph{pipage rounding} framework, which has been successfully applied in \citeN{chen, singer-influence}. -However, for the specific function $V$ defined in \eqref{modified}, the +For the specific function $V$ defined in \eqref{modified}, the multi-linear extension cannot be computed (and \emph{a fortiori} maximized) in polynomial time. Hence, we introduce a new function $L$: \begin{equation}\label{eq:our-relaxation} \forall\,\lambda\in[0,1]^n,\quad L(\lambda) \defeq \log\det\left(I_d + \sum_{i\in\mathcal{N}} \lambda_i x_i\T{x_i}\right), \end{equation} -Note that the relaxation $L$ that we introduced in \eqref{eq:our-relaxation}, +Note that this relaxation, follows naturally from the \emph{multi-linear} extension by swapping the expectation and $V$ in \eqref{eq:multi-linear}: \begin{displaymath} @@ -64,330 +75,73 @@ a relaxation. We define: \leq B\right\} \end{equation} -The key property of the relaxation $L$, which is our main technical result, is -that it has constant approximation ratios to the multi-linear extension $F$. - -\begin{lemma}\label{lemma:relaxation-ratio} - % The following inequality holds: -For all $\lambda\in[0,1]^{n},$ - %\begin{displaymath} - $ \frac{1}{2} - \,L(\lambda)\leq - F(\lambda)\leq L(\lambda)$. - %\end{displaymath} -\end{lemma} -\begin{proof} - The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}(\lambda)}$ follows by the concavity of the $\log\det$ function. - To show the lower bound, - we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i - F(\lambda)/\partial_i L(\lambda)$, where - $\partial_i\, \cdot$ denotes the partial derivative with respect to the - $i$-th variable. - - Let us start by computing the derivatives of $F$ and - $L$ with respect to the $i$-th component. - Observe that - \begin{displaymath} - \partial_i P_\mathcal{N}^\lambda(S) = \left\{ - \begin{aligned} - & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; - i\in S, \\ - & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\; - i\in \mathcal{N}\setminus S. \\ - \end{aligned}\right. - \end{displaymath} - Hence, - \begin{displaymath} - \partial_i F(\lambda) = - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S) - - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S). - \end{displaymath} - Now, using that every $S$ such that $i\in S$ can be uniquely written as - $S'\cup\{i\}$, we can write: - \begin{displaymath} - \partial_i F(\lambda) = - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\}) - - V(S)\big). - \end{displaymath} - The marginal contribution of $i$ to - $S$ can be written as -\begin{align*} -V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d - + \T{X_S}X_S + x_i\T{x_i}) - - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\\ - & = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d + -\T{X_S}X_S)^{-1}) - = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i) -\end{align*} -where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the -Sylvester's determinant identity~\cite{sylvester}. -% $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$. -Using this, - \begin{displaymath} - \partial_i F(\lambda) = \frac{1}{2} - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big) - \end{displaymath} - The computation of the derivative of $L$ uses standard matrix - calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in - \mathcal{N}}\lambda_ix_i\T{x_i}$, - \begin{displaymath} - \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda) - + hx_i\T{x_i}\big) - =\det \tilde{A}(\lambda)\big(1+ - h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big). - \end{displaymath} - Hence, - \begin{displaymath} - \log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda) - + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h), - \end{displaymath} - which implies - \begin{displaymath} - \partial_i L(\lambda) - =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i. - \end{displaymath} - -For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if -$A-B$ is positive definite (positive semi-definite). This order allows us to -define the notion of a \emph{decreasing} as well as \emph{convex} matrix -function, similarly to their real counterparts. With this definition, matrix -inversion is decreasing and convex over symmetric positive definite -matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}). -In particular, -\begin{gather*} - \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1} -\end{gather*} -as $A(S)\preceq A(S\cup\{i\})$. Observe that - % \begin{gather*} - % \forall -$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and - % ,\\ - $P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$. - %\end{gather*} - Hence, - \begin{align*} - \partial_i F(\lambda) - % & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ - & \geq \frac{1}{4} - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ - &\hspace{-3.5em}+\frac{1}{4} - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\}) - \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\ - &\geq \frac{1}{4} - \sum_{S\subseteq\mathcal{N}} - P_\mathcal{N}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big). - \end{align*} - Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq - \norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$. - Hence, - \begin{displaymath} - \partial_i F(\lambda) \geq - \frac{1}{4} - \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i. - \end{displaymath} - Finally, using that the inverse is a matrix convex function over symmetric - positive definite matrices: - \begin{displaymath} - \partial_i F(\lambda) \geq - \frac{1}{4} - \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i - = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i - = \frac{1}{2} - \partial_i L(\lambda). - \end{displaymath} - -Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases. - First, if the minimum of the ratio - $F(\lambda)/L(\lambda)$ is attained at a point interior to the hypercube, then it is - a critical point, \emph{i.e.}, $\partial_i \big(F(\lambda)/L(\lambda)\big)=0$ for all $i\in \mathcal{N}$; hence, at such a critical point: - \begin{equation}\label{eq:lhopital} - \frac{F(\lambda)}{L(\lambda)} - = \frac{\partial_i F(\lambda)}{\partial_i - L(\lambda)} \geq \frac{1}{2}. - \end{equation} - Second, if the minimum is attained as - $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write: - \begin{displaymath} - \frac{F(\lambda)}{L(\lambda)} - \sim_{\lambda\rightarrow 0} - \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)} - {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)} - \geq \frac{1}{2}, - \end{displaymath} - \emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$. - Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is - defined as a subset of the hypercube where one of the variable is fixed to - 0 or 1), without loss of generality, we can assume that the minimum is - attained on the face where the $n$-th variable has been fixed - to 0 or 1. Then, either the minimum is attained at a point interior to the - face or on a boundary of the face. In the first sub-case, relation - \eqref{eq:lhopital} still characterizes the minimum for $i< n$. - In the second sub-case, by repeating the argument again by induction, we see - that all is left to do is to show that the bound holds for the vertices of - the cube (the faces of dimension 1). The vertices are exactly the binary - points, for which we know that both relaxations are equal to the value - function $V$. Hence, the ratio is equal to 1 on the vertices. -\end{proof} - -We now prove that $F$ admits the following exchange property: let -$\lambda$ be a feasible element of $[0,1]^n$, it is possible to trade one -fractional component of $\lambda$ for another until one of them becomes -integral, obtaining a new element $\tilde{\lambda}$ which is both feasible and -for which $F(\tilde{\lambda})\geq F(\lambda)$. Here, by feasibility of a point -$\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n -\lambda_i c_i \leq B$. This rounding property is referred to in the literature -as \emph{cross-convexity} (see, \emph{e.g.}, \cite{dughmi}), or -$\varepsilon$-convexity by \citeN{pipage}. - -\begin{lemma}[Rounding]\label{lemma:rounding} - For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible - $\bar{\lambda}\in[0,1]^{n}$ such that at most one of its components is - fractional %, that is, lies in $(0,1)$ and: - and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$. -\end{lemma} -\begin{proof} - We give a rounding procedure which, given a feasible $\lambda$ with at least - two fractional components, returns some feasible $\lambda'$ with one less fractional - component such that $F(\lambda) \leq F(\lambda')$. - - Applying this procedure recursively yields the lemma's result. - Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two - fractional components of $\lambda$ and let us define the following - function: - \begin{displaymath} - F_\lambda(\varepsilon) = F(\lambda_\varepsilon) - \quad\textrm{where} \quad - \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right) - \end{displaymath} - It is easy to see that if $\lambda$ is feasible, then: - \begin{equation}\label{eq:convex-interval} - \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j - \frac{c_j}{c_i}\Big)\Big],\; - \lambda_\varepsilon\;\;\textrm{is feasible} - \end{equation} - Furthermore, the function $F_\lambda$ is convex; indeed: - \begin{align*} - F_\lambda(\varepsilon) - & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[ - (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\ - & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\}) - + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\ - & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big] - \end{align*} - Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is: - \begin{displaymath} - \frac{c_i}{c_j}\mathbb{E}_{S'\sim - P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[ - V(S'\cup\{i\})+V(S'\cup\{i\})\\ - -V(S'\cup\{i,j\})-V(S')\Big] - \end{displaymath} - which is positive by submodularity of $V$. Hence, the maximum of - $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is - attained at one of its limit, at which either the $i$-th or $j$-th component of - $\lambda_\varepsilon$ becomes integral. -\end{proof} - -Using Lemma~\ref{lemma:rounding}, we can relate the multi-linear extension to -$OPT$, and Lemma~\ref{lemma:relaxation-ratio} relates our relaxation $L$ to the -multi-linear extension. Putting these together gives us the following result: +The key property of our relaxation $L$ is that it has a bounded approximation +ratio to the multi-linear relaxation $F$. This is one of our main technical +contributions and is stated and proved in Lemma~\ref{lemma:relaxation-ratio} +found in Appendix. Moreover, the multi-linear relaxation $F$ has an exchange +property (see Lemma~\ref{lemma:rounding}) which allows us to relate its value to +$OPT$ through rounding. Together, these properties give the following +proposition which is also proved in the Appendix. \begin{proposition}\label{prop:relaxation} $L^*_c \leq 2 OPT + 2\max_{i\in\mathcal{N}}V(i)$. \end{proposition} -\begin{proof} -Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that -$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and -Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most -one fractional component such that -\begin{equation}\label{eq:e1} - L(\lambda^*) \leq 2 F(\bar{\lambda}). -\end{equation} - Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$ - denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$. - By definition of the multi-linear extension $F$: - \begin{displaymath} - F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}). - \end{displaymath} - By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence, - \begin{displaymath} - F(\bar{\lambda}) \leq V(S) + V(i). - \end{displaymath} - Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and - $V(S)\leq OPT$. Hence, - \begin{equation}\label{eq:e2} - F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i). - \end{equation} - Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma. -\end{proof} - -\subsection{A monotonous estimator}\label{sec:monotonicity} +\subsection{Solving a convex problem monotonously}\label{sec:monotonicity} -The $\log\det$ function is concave and self-concordant (see -\cite{boyd2004convex}), in this case, the analysis of the barrier method in -in \cite{boyd2004convex} (Section 11.5.5) can be summarized in the following -lemma: +Note, that the feasible set in Problem~\eqref{eq:primal} increases (for the +inclusion) when the cost decreases. As a consequence, $c\mapsto L^*_c$ is +non-increasing. -\begin{lemma}\label{lemma:barrier} -For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate -approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$. -\end{lemma} +Furthermore, \eqref{eq:primal} being a convex optimization problem, using +standard convex optimization algorithms (Lemma~\ref{lemma:barrier} gives +a formal statement for our specific problem) we can compute +a $\varepsilon$-accurate approximation of its optimal value as defined below. -Note however that even though $L^*_c$ is non-decreasing along coordinate axis -(if one of the cost decreases, then the feasible set of \eqref{eq:primal} -increases), this will not necessarily be the case for an $\varepsilon$-accurate -approximation of $L^*_c$ and Lemma~\ref{lemma:barrier} in itself is not -sufficient to provide an approximation satisfying the -properties requested at the beginning of Section~\ref{sec:approximation}. +\begin{definition} +$a$ is an $\varepsilon$-accurate approximation of $b$ iff $|a-b|\leq \varepsilon$. +\end{definition} -The estimator we will construct in this section will have a slightly weaker -form of coordinate-wise monotonicity: \emph{$\delta$-monotonicity}. +Note however that an $\varepsilon$-accurate approximation of a non-increasing +function is not in general non-increasing itself. The goal of this section is +to approximate $L^*_c$ while preserving monotonicity. The estimator we +construct has a weaker form of monotonicity that we call +\emph{$\delta$-monotonicity}. \begin{definition} Let $f$ be a function from $\reals^n$ to $\reals$, we say that $f$ is -\emph{$\delta$-increasing} iff: -\begin{displaymath} +\emph{$\delta$-increasing along the $i$-th coordinate} iff: +\begin{equation}\label{eq:dd} \forall x\in\reals^n,\; \forall \mu\geq\delta,\; - \forall i\in\{1,\ldots,n\},\; f(x+\mu e_i)\geq f(x) -\end{displaymath} -where $e_i$ is the $i$-th basis vector of $\reals^n$. We define -\emph{$\delta$-decreasing} functions similarly. +\end{equation} +where $e_i$ is the $i$-th canonical basis vector of $\reals^n$. By extension, +$f$ is $\delta$-increasing iff it is $\delta$-increasing along all coordinates. + +We define \emph{$\delta$-decreasing} functions by reversing the inequality in +\eqref{eq:dd}. \end{definition} -For the ease of presentation, we normalize the costs by dividing them by the -budget $B$ so that the budget constraint in \eqref{eq:primal} now reads -$\T{c}\lambda\leq 1$. We consider a perturbation of \eqref{eq:primal} by -introducing: +We consider a perturbation of \eqref{eq:primal} by introducing: \begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal} L^*_c(\alpha) \defeq \max_{\lambda\in[\alpha, 1]^{n}} \left\{L(\lambda) \Big| \sum_{i=1}^{n} \lambda_i c_i - \leq 1\right\} + \leq B\right\} \end{equation} Note that we have $L^*_c = L^*_c(0)$. We will also assume that -$\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at least one -feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$. - -The $\delta$-decreasing approximation of $L^*_c$ is obtained by computing an -approximate solution of \eqref{eq:perturbed-primal}. +$\alpha<\frac{1}{nB}$ so that \eqref{eq:perturbed-primal} has at least one +feasible point: $(\frac{1}{nB},\ldots,\frac{1}{nB})$. By computing +an approximation of $L^*_c(\alpha)$ as in Algorithm~\ref{alg:monotone}, we +obtain a $\delta$-decreasing approximation of $L^*_c$. -\begin{algorithm}[h] +\begin{algorithm}[t] \caption{}\label{alg:monotone} \begin{algorithmic}[1] - \State $\alpha \gets \varepsilon(\delta+n^2)^{-1} $ + \State $\alpha \gets \varepsilon B^{-1}(\delta+n^2)^{-1} $ \State Compute a $\frac{1}{2^{n+1}}\alpha\delta b$-accurate approximation of - $L^*_c(\alpha)$ using the barrier method + $L^*_c(\alpha)$ \end{algorithmic} \end{algorithm} @@ -399,231 +153,3 @@ approximate solution of \eqref{eq:perturbed-primal}. \end{proposition} -We show that the optimal value of \eqref{eq:perturbed-primal} is close to the -optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being -well-behaved with respect to changes of the cost -(Lemma~\ref{lemma:monotonicity}). These lemmas together imply -Proposition~\ref{prop:monotonicity}. - - -\begin{lemma}\label{lemma:derivative-bounds} - Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then: - \begin{displaymath} - \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1 - \end{displaymath} -\end{lemma} - -\begin{proof} - Let us define: - \begin{displaymath} - S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i} - \quad\mathrm{and}\quad - S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i} - \end{displaymath} - - We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since - $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which - is the right-hand side of the lemma. - - For the left-hand side, note that $S(\lambda) \leq S_n$. Hence - $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$. - - Using the Sherman-Morrison formula, for all $k\geq 1$: - \begin{displaymath} - \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i - - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k} - \end{displaymath} - - By the Cauchy-Schwarz inequality: - \begin{displaymath} - (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k - \end{displaymath} - - Hence: - \begin{displaymath} - \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i - - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k} - \end{displaymath} - - But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if - $0\leq a\leq 1$, so: - \begin{displaymath} - \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i - - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2} - \end{displaymath} - - By induction: - \begin{displaymath} - \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n} - \end{displaymath} - - Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side - of the lemma's inequality. -\end{proof} - -Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}: - -\begin{displaymath} - \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) - + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda) -\end{displaymath} -so that: -\begin{displaymath} - L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) -\end{displaymath} -Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}. - -Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*, -\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and -dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$: -\begin{gather*} - \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\ - \mu_i^*(\lambda_i^* - \alpha) = 0\\ - \nu_i^*(1 - \lambda_i^*) = 0 -\end{gather*} - -\begin{lemma}\label{lemma:proximity} -We have: -\begin{displaymath} - L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c -\end{displaymath} -In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$. -\end{lemma} - -\begin{proof} - $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the - maximum value of the $L$ function over a set-decreasing domain, which gives - the rightmost inequality. - - Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is: - \begin{displaymath} - L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) - \end{displaymath} - - Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) - = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for - problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - \geq L(\lambda)$. Hence, - \begin{displaymath} - L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^* - \end{displaymath} - for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$: - \begin{equation}\label{eq:local-1} - L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^* - \end{equation} - - Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq - \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for - $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that: - \begin{displaymath} - M \subseteq \{i|\lambda_i^* = \alpha\} - \end{displaymath} - - - Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows. - - We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^* - = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$, - which would increase the value of the objective function and contradict the - optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since - $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again - contradicts the optimality of $\lambda^*$. Let us write: - \begin{displaymath} - 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i - \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i - \end{displaymath} - That is: - \begin{equation}\label{local-2} - \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n} - \end{equation} - where the last inequality uses again that $\alpha<\frac{1}{n}$. From the - KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and: - \begin{equation}\label{local-3} - \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^* - \end{equation} - since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$. - - Furthermore, using the KKT conditions again, we have that: - \begin{equation}\label{local-4} - \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i} - = \frac{1}{\max_{i\in\bar{M}} c_i} - \end{equation} - where the last inequality uses Lemma~\ref{lemma:derivative-bounds}. - - Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that: - \begin{displaymath} - \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2 - \end{displaymath} - - This implies that: - \begin{displaymath} - \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2 - \end{displaymath} - which in addition to \eqref{eq:local-1} proves the lemma. -\end{proof} - -\begin{lemma}\label{lemma:monotonicity} - If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have: - \begin{displaymath} - L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n} - \end{displaymath} -\end{lemma} - -\begin{proof} - Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that: - \begin{displaymath} - \mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq - \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta, - \end{displaymath} - we get similarly to Lemma~\ref{lemma:proximity}: - \begin{displaymath} - L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta - \end{displaymath} - for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}: - \begin{displaymath} - L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta - \end{displaymath} - since $\lambda_i^*\geq \alpha$. - - Using the KKT conditions for $(P_{c', \alpha})$, we can write: - \begin{displaymath} - \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'} - \end{displaymath} - with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof. -\end{proof} - - -\subsubsection*{End of the proof of Proposition~\ref{prop:monotonicity}} - -Let $\tilde{L}^*_c$ be the approximation computed by -Algorithm~\ref{alg:monotone}. -\begin{enumerate} - \item using Lemma~\ref{lemma:proximity}: -\begin{displaymath} - |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c| - \leq \alpha\delta + \alpha n^2 = \varepsilon -\end{displaymath} -which proves the $\varepsilon$-accuracy. - -\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq - c_i-\delta$, then: -\begin{displaymath} - \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}} - \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}} - \geq \tilde{L}^*_c -\end{displaymath} -where the first and inequality come from the accuracy of the approximation, and -the inner inequality follows from Lemma~\ref{lemma:monotonicity}. - -\item the accuracy of the approximation $\tilde{L}^*_c$ is: -\begin{displaymath} - A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)} -\end{displaymath} - -Note that: -\begin{displaymath} - \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg) -\end{displaymath} -Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed -\end{enumerate} |
