diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-23 17:08:29 -0700 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-23 17:08:29 -0700 |
| commit | e92f1202263bcbb19a83cce559cf0fb53e3537bd (patch) | |
| tree | 9de83f70c87faad801411067a828002865910fb1 /proof.tex | |
| parent | 4a31aa7433707a2b5b93200223c4f4ccb39e9c20 (diff) | |
| download | recommendation-e92f1202263bcbb19a83cce559cf0fb53e3537bd.tar.gz | |
Conform to STOC format for proof.tex
Diffstat (limited to 'proof.tex')
| -rw-r--r-- | proof.tex | 8 |
1 files changed, 2 insertions, 6 deletions
@@ -1,7 +1,6 @@ -\documentclass{IEEEtran} -%\usepackage{mathptmx} +\documentclass{acm_proc_article-sp} \usepackage[utf8]{inputenc} -\usepackage{amsmath,amsthm,amsfonts} +\usepackage{amsmath,amsfonts} \usepackage{algorithm} \usepackage{algpseudocode} \newtheorem{lemma}{Lemma} @@ -320,7 +319,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} \partial_i L_\mathcal{N}(\lambda) \end{align*} - \end{proof} \begin{lemma} @@ -361,7 +359,6 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{equation} Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results. - \end{proof} \begin{algorithm} @@ -443,7 +440,6 @@ The mechanism is budget feasible. OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot C_\kappa(e-1) -5e +1}\right) V(S_M) \end{displaymath} - \end{proof} \begin{theorem} |
