diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-03-03 20:15:00 -0800 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-03-03 20:15:00 -0800 |
| commit | b6a88dc29d0a5a0598c68666408c6197fbc6fe0e (patch) | |
| tree | fece78067abb7d83c9bbd90cbcd45f2563019e3c /slides/BudgetFeasibleExperimentalDesign.tex | |
| parent | e80124c06ad4b9af98f64e110551aab584c12010 (diff) | |
| download | recommendation-b6a88dc29d0a5a0598c68666408c6197fbc6fe0e.tar.gz | |
almost extensions
Diffstat (limited to 'slides/BudgetFeasibleExperimentalDesign.tex')
| -rw-r--r-- | slides/BudgetFeasibleExperimentalDesign.tex | 389 |
1 files changed, 294 insertions, 95 deletions
diff --git a/slides/BudgetFeasibleExperimentalDesign.tex b/slides/BudgetFeasibleExperimentalDesign.tex index 04e2f8e..ca60e04 100644 --- a/slides/BudgetFeasibleExperimentalDesign.tex +++ b/slides/BudgetFeasibleExperimentalDesign.tex @@ -27,6 +27,7 @@ \newcommand{\ie}{\emph{i.e.}} \newcommand{\eg}{\emph{e.g.}} \newcommand{\etc}{\emph{etc.}} +\newcommand{\etal}{\emph{et al.}} \newcommand{\reals}{\ensuremath{\mathbb{R}}} \usefonttheme[onlymath]{serif} @@ -83,9 +84,14 @@ \item Linear Regression \pause \begin{itemize} - \item \emph{Deterministic}, truthful, budget feasible, 12.98-appriximate mechanism. + \item We present a \alert{deterministic, poly-time}, truthful, budget feasible, 12.98-appriximate mechanism. \pause - \item Singer 2010, Chen 2011:\\ \emph{Randomized}, universaly truthful, budget feasible, 7.91-approximate mechanism. + \vspace*{0.5cm} + \item Previous results: + \begin{itemize} + \item \alert{Randomized}, poly-time, universally truthful, 7.91-approximate mechanism. [Singer 2010, Chen 2011] + \item Deterministic, \alert{exponential time}, truthful mechanism. [Chen 2011] + \end{itemize} \end{itemize} \pause \vspace*{1cm} @@ -104,21 +110,23 @@ \end{frame} -\begin{frame}{Experimental Design} +\begin{frame}{Formulating the Problem} \begin{center} \includegraphics<1>[scale=0.4]{st2.pdf} \includegraphics<2>[scale=0.4]{st3.pdf} \includegraphics<3>[scale=0.4]{st4.pdf} \includegraphics<4>[scale=0.4]{st5.pdf} \includegraphics<5>[scale=0.4]{st6.pdf} - \includegraphics<6>[scale=0.4]{st7.pdf} - \includegraphics<7>[scale=0.4]{st8.pdf} - \includegraphics<8>[scale=0.4]{st9.pdf} + \includegraphics<6>[scale=0.4]{st6a.pdf} + \includegraphics<7>[scale=0.4]{st6b.pdf} + \includegraphics<8>[scale=0.4]{st6c.pdf} + \includegraphics<9>[scale=0.4]{st6d.pdf} + \includegraphics<10->[scale=0.4]{st6e.pdf} \end{center} \begin{center} \begin{overprint} - \onslide<1>\begin{center}$N$ users (``experiment subjects'') \end{center} + \onslide<1>\begin{center}$N$ users (``experiment subjects''), $[N]\equiv \{1,\ldots,N\}$ \end{center} \onslide<2> \begin{center} $x_i\in \reals^d$: public features (\eg, age, gender, height, \etc) @@ -132,56 +140,157 @@ \textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t. \begin{displaymath} y_i = \beta^T x_i + \varepsilon_i,\quad - \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i=1,\ldots,N + \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i\in [N] \end{displaymath} %$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$ %\end{center} - \onslide<5-7> + \onslide<5> \begin{center} - Experimenter {\tt E} wishes to learn $\beta$ and can perform at most $k$ experiments. + Experimenter {\tt E} wishes to learn $\beta$. \end{center} - \onslide<8> - \begin{center}{\tt E} computes estimate $\hat{\beta}$ of $\beta$ through ridge regression. + \onslide<6>\begin{center} + Each subject $i\in [N]$ has a cost $c_i\in \reals_+$ + \end{center} + \onslide<7> + \begin{center} + \E\ has a budget $B$. + \end{center} + \onslide<8-9> + \begin{center} + \E\ pays subjects\visible<9>{; $y_i$ is revealed only if $i$ is paid.} + \end{center} + \onslide<10> + \begin{center}{\tt E} estimates ${\beta}$ through \emph{ridge regression}. + \end{center} + \onslide<11> + \begin{center} +%\begin{enumerate} +Goal: Determine (a) who to pay and (b) how much,\\ so that $\hat{\beta}$ is as accurate as possible. +%\begin{align*} +% \text{Determine (a) who to pay:}\quad &S\subseteq [N], \text{ and}\\ +% \text{(b)~ how much:}\quad &p_i\in \reals_+,~~i\in S. +%\end{align*} +%\end{enumerate} + \end{center} + \onslide<12-> + \begin{center}Users are \alert{strategic}: the may lie about costs $c_i$\visible<13>{\\ Users \alert{cannot manipulate $x_i$ or $y_i$}.} %\\(tamper-proof experiments) \end{center} + \end{overprint} \end{center} \end{frame} -\begin{frame}{Linear (Ridge) Regression} -%There exists $\beta\in \reals^d$ s.t. -% \begin{displaymath} -% y_i = \beta^T x_i + \varepsilon_i,\quad -% \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i=1,\ldots,N -% \end{displaymath} -\visible<1->{Let $S\subset [N]\equiv \{1,\ldots,N\}$ be the set of experiments performed.\\\medskip} -\visible<2->{Assume that \E\ has a \emph{prior} on $\beta$: +\begin{frame}{Budget Feasible Mechanism Design [Singer 2010]} +Let $S\subset [N]$ be the set of experiments performed, and + $c=[c_i]_{i\in [N]}$ be the subject costs. \\\bigskip +\visible<2->{Let $V(S)\in\reals_+$ denote the \alert{value} of the experiments.} +\visible<3->{$$\text{High }V(S) \Leftrightarrow \text{ estimate }\hat{\beta}(S) \text{ is close to }\beta $$} +\visible<4->{ +%\item<1->Fix budget $B$ and value function $V:2^{[N]}\to\reals_+$ +\begin{block}{Reverse Auction Mechanism} + A mechanism $\mathcal{M}(c)=(S(c),p(c))$ comprises +\begin{itemize} +\item an \alert{allocation function} $S:\reals_+^N\to 2^{[N]}$, and +\item a \alert{payment function} $p:\reals_+^N\to \reals_+^N$. +\end{itemize} +\end{block} +} +\end{frame} + + +\begin{frame}{Budget Feasible Mechanism Design [Singer 2010] (cont'd)} + We seek mechanisms $\mathcal{M}=(S,p)$ that are: + \pause + \vspace{0.3cm} + \begin{itemize} + \item Normalized: $p_i=0$ if $i\notin S$. + \vspace{0.2cm} + \pause + \item Individually Rational: $p_i\geq c_i,\;i\in S$ + \vspace{0.2cm} + \pause + \item Truthful: $p_i(c_i,c_{-i})-\mathbbm{1}_{i\in S(c_i,c_{-i})}\cdot c_i \geq p_i(c_i',c_{-i})-\mathbbm{1}_{i\in S(c_i',c_{-i})}\cdot c_i $ + \vspace{0.2cm} + \pause + \item budget feasible: $\sum_{i\in S} p_i \leq B$ + \vspace{0.2cm} + \end{itemize} + + \pause + \vspace{0.3cm} + + In addition, $\mathcal{M}$ must be: + \vspace{0.3cm} + \pause + \begin{itemize} + \item computationally efficient: polynomial time + \pause + \vspace{0.2cm} + \item constant approximation: $V(OPT) \leq \alpha V(S)$ with: + \begin{displaymath} + OPT = \arg\max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\} + \end{displaymath} + \end{itemize} +\end{frame} + + + + +\begin{frame}{Which Experiments Are Informative?} + +\alt<1>{What is the appropriate value function $V$?} {Let $S\subset [N]$ be the set of experiments performed.\\\medskip} +%\end{overprint} +\visible<3->{Assume that \E\ has a \emph{prior} on $\beta$: $$\beta \sim \mathcal{N}(0,\sigma^2 R). $$} -\visible<3->{Maximum a-posteriori estimation: +\visible<4->{Maximum a-posteriori estimation: \begin{align*} \hat{\beta} &= \argmax_{\beta\in\reals^d} \mathbf{P}(\beta\mid y_i, i\in S) \\ &=\argmin_{\beta\in\reals^d} \big(\sum_{i\in S} (y_i - {\beta}^Tx_i)^2 - + \only<3-4>{\alert<4->{{\beta}^TR^{-1}\beta}\big)} \only<5>{\alert{\|\beta\|_2^2}\big)~~~~~} + + \only<4-5>{\alert<5->{{\beta}^TR^{-1}\beta}\big)} \only<6>{\alert{\|\beta\|_2^2}\big)~~~~~} %= (R+{X_S}^TX_S)^{-1}X_S^Ty_S \end{align*} } -\visible<4->{\hspace*{3in}\alert{Ridge Regression}\\} -\visible<5>{\hspace*{3in}$R=I$: homotropic prior} +\visible<5->{\hspace*{3in}\alert{Ridge Regression}\\} +\visible<6>{\hspace*{2.8in}\alert{$R=I$: homotropic prior}} \end{frame} -\begin{frame}{Value Function} -Select $S\subset [N]$, s.t. $|S|\leq k$. -\\\bigskip +\begin{frame}{Which Experiments Are Informative? (contd.)} +Let $S\subset [N]$ be the set of experiments performed.\\\bigskip + \visible<2->{ Information Gain/D-optimality Criterion: \begin{align*} V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ -\visible<3->{& = \frac{1}{2}\log\det (R^{-1}+X_S^TX_S)} +\visible<3->{& = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T)} \end{align*} -\visible<3->{where $$X_S=[x_i^T]_{i\in S}\in \reals^{|S|\times d}$$} + +\visible<4->{ \emph{I.e.}: $$\alert{\text{Value of~}S=\text{Reduction of Uncertainty.}} $$} +\vspace*{-0.7cm} } \end{frame} +\begin{frame}{Full Information Setting} +\onslide<2->{ +\begin{block}{\textsc{Experimental Design Problem (EDP)} } +\vspace*{-0.4cm} +\begin{align*} + \text{Maximize}\qquad &V(S) = \log \det (\alert<3>{I}+\sum_{i\in S}x_ix_i^T) \\ + \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B +\end{align*} +\end{block} +} +\begin{itemize} +\item<3->$R=I$: homotropic prior +\item<4-> EDP is NP-hard +\item<5-> $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$ +\item<6-> $\frac{1}{1-1/e}$-approximable (Sviridenko 2004, Krause and Guestrin 2005) +\end{itemize} + + + +\end{frame} + %\begin{frame}{Classic Experimental Design} %\begin{center} %\includegraphics[scale=0.3]{st10.pdf} @@ -192,7 +301,7 @@ V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ %\end{align*} %\end{frame} - +\begin{comment} \begin{frame}{Cardinality vs. Budget Constraint} \begin{center} \includegraphics<1>[scale=0.3]{st10a.pdf} @@ -209,17 +318,6 @@ V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ \text{subj. to}& & |S|&\leq k \end{align*} - \onslide<2>\begin{center} - Each subject $i\in [N]$ has a cost $c_i\in \reals_+$ - \end{center} - \onslide<3> - \begin{center} - \E\ has a budget $B$. - \end{center} - \onslide<4-5> - \begin{center} - \E\ can pay subjects\visible<5>{; $y_i$ is revealed only if $i$ is paid.} - \end{center} \onslide<6-> \begin{block}{\textsc{Experimental Design Problem (EDP)} } \vspace*{-0.4cm} @@ -306,53 +404,22 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} % \end{itemize} %\end{block} %\end{frame} +\end{comment} -\begin{frame}{Objectives} - Mechanism $\mathcal{M}=(S,p)$ must be: - \pause - \vspace{0.3cm} - \begin{itemize} - \item Normalized: $p_i=0$ if $i\notin S$. - \vspace{0.2cm} - \pause - \item Individually Rational: $p_i\geq c_i,\;i\in S$ - \vspace{0.2cm} - \pause - \item Truthful: $p_i(c_i,c_{-i})-\mathbbm{1}_{i\in S(c_i,c_{-i})}\cdot c_i \geq p_i(c_i',c_{-i})-\mathbbm{1}_{i\in S(c_i',c_{-i})}\cdot c_i $ - \vspace{0.2cm} - \pause - \item budget feasible: $\sum_{i\in S} p_i \leq B$ - \vspace{0.2cm} - \end{itemize} - - \pause - \vspace{0.3cm} - - Mechanism must be: - \vspace{0.3cm} - \pause - \begin{itemize} - \item computationally efficient: polynomial time - \pause - \vspace{0.2cm} - \item constant approximation: $V(OPT) \leq \alpha V(S)$ with: - \begin{displaymath} - OPT = \arg\max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\} - \end{displaymath} - \end{itemize} -\end{frame} - - -\begin{frame}{Known Results} +\begin{frame}{Strategic Subjects} When $V$ is submodular: \vspace{1cm} \pause \begin{itemize} - \item \alert{randomized}, universally truthful, budget feasible mechanism, + \item \alert{Randomized}, poly-time, universally truthful mechanism, approximation ratio: $7.91$ [Singer 2010, Chen \emph{et al.}, 2011] - \vspace{1cm} + \vspace{0.5cm} \pause - \item \alert{deterministic} mechanisms for specific submodular $V$ functions: + \item Deterministic, \alert{exponential time}, truthful mechanism, + approximation ratio: $8.34$ [Singer 2010, Chen \emph{et al.}, 2011] + \vspace{0.5cm} + \pause + \item \alert{Deterministic, poly-time}, truthful mechanisms for specific submodular functions $V$ : \vspace{0.3cm} \begin{itemize} \item Knapsack: $2+\sqrt{2}$ [Singer 2010, Chen \emph{et al.}, 2011] @@ -453,7 +520,7 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \begin{frame}{Main result} \end{comment} -\section{Main Result} +\section{Main Results} \begin{frame}{Outline} @@ -461,41 +528,173 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \end{frame} -\begin{frame}{Our Main Result} - \begin{theorem} +\begin{frame}{Main Results} + \begin{theorem}<2-> There exists deterministic, budget feasible, individually rational and truthful mechanism for EDP which runs in polynomial time. Its approximation ratio is: \begin{displaymath} - \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}+\varepsilon - \simeq 12.98 +\varepsilon + \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)} + \simeq 12.98 \end{displaymath} \end{theorem} + \begin{theorem}<3-> + There is no 2-approximate, budget feasible, individually rational and truthful mechanism for + EDP. \end{theorem} + +\end{frame} + +\begin{frame}{Myerson's Theorem} +\begin{theorem}[Myerson 1981] + A normalized mechanism $\mathcal{M} = (S,p)$ for a single parameter auction is +truthful iff: +\begin{enumerate} +\item<2-> + $S$ is \alert{monotone}, \emph{i.e.},%\\ for any agent $i$ and $c_i' \leq c_i$, for any fixed costs $c_{-i}$ of agents in $[N]\setminus\{i\}$, + $$\text{for all}~c_i' \leq c_i,\quad i\in S(c_i, +c_{-i})\text{ implies }i\in S(c_i', c_{-i}),$$ and +\item<3-> + subjects are paid \alert{threshold payments}, \emph{i.e.}, $$\text{for all }i\in S(c), \qquad p_i(c)=\inf\{c_i': i\in S(c_i', c_{-i})\}.$$ +\end{enumerate} +\end{theorem} +\uncover<4->{Focus on \alert{monotone} mechanisms.} + +\end{frame} + +\begin{frame}{A Greedy Construction for Submodular $V$} +Construct $S_G$ by adding elements with \emph{highest marginal-value-per-cost}.\\ +\bigskip +\visible<2->{If $S_G=S$ so far, add to it: +\begin{align*} + i = \argmax_{j\in\mathcal{N}\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy} +\end{align*} +Stop when budget $B$ is reached. +} + +\end{frame} + +\begin{frame}{A Randomized Mechanism for Submodular $V$ [Singer 2010]} + \begin{block}{Allocation $S$:} + \begin{itemize} + \item Let $i^* = \arg\max_i V(\{i\})$ + \item Compute $S_G$ greedily over $[N]\setminus i^*$ + \item Return $S$: + \begin{itemize} + \item Selected at random between $i^*$ and $S_G$ + \end{itemize} + \end{itemize} + \end{block} + \vspace{0.5cm} +\uncover<2->{ +[Singer 2010] Along with threshold payments, this mechanism is: +\begin{itemize} +\item poly-time, +\item universally truthful, +\item budget-feasible +\item 7.91-approximate [Chen \etal\ 2011]. +\end{itemize} +} \end{frame} -\begin{frame}{Sketch of proof} - \begin{block}{Mechanism (Chen et. al, 2011) for submodular $V$} +\begin{frame}{A Deterministic Mechanism for Submodular $V$ [Singer 2010]} + \begin{block}{Allocation $S$} \begin{itemize} \item Find $i^* = \arg\max_i V(\{i\})$ \item Compute $S_G$ greedily \item Return: \begin{itemize} - \item $\{i^*\}$ if $V(\{i^*\}) \geq \only<1-2>{V(OPT_{-i^*})}\only<3>{\alert{V(OPT_{-i^*})}}\only<4->{\alert{L^*}}$ + \item $\{i^*\}$ if $V(\{i^*\}) \geq \alert<3>{V(OPT_{-i^*})}$ \item $S_G$ otherwise \end{itemize} \end{itemize} \end{block} - + \vspace{0.5cm} +\uncover<2->{ +[Singer 2010] Along with threshold payments, this mechanism is: +\begin{itemize} +\item truthful, +\item budget-feasible +\item 8.34-approximate [Chen \etal\ 2011]. +\end{itemize} \vspace{0.5cm} \pause + \alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute +} +\end{frame} - Valid mechanism, approximation ratio: 8.34 +\begin{frame}{Blueprint for Deterministic, Poly-time Algorithm} +Azar and Gamzu 2008, Singer 2010, Chen \etal\ 2011: + \begin{block}{Allocation $S$} + \begin{itemize} + \item Find $i^* = \arg\max_i V(\{i\})$ + \item Compute $S_G$ greedily + \item Return: + \begin{itemize} + \item $\{i^*\}$ if $V(\{i^*\}) \geq \alert{L^*}$ + \item $S_G$ otherwise + \end{itemize} + \end{itemize} + \end{block} \vspace{0.5cm} - \pause + \begin{columns}[c] + \begin{column}{0.53\textwidth} +Key idea:\\ Replace $OPT$ with a \alert{relaxation $L^*$}:\pause + \begin{itemize} + \item computable in polynomial time + \pause + \item close to $V(OPT_{-i^*})$ + \pause + \item monotone in costs $c$ + \end{itemize} + \end{column} + \pause + \begin{column}{0.45\textwidth} + \begin{itemize} + \item Knapsack (Chen \etal, 2011) + \item Coverage (Singer, 2012) + \end{itemize} + \end{column} + \end{columns} +\end{frame} - \alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute +\begin{frame}{Main Technical Contribution: Relaxation for EDP} +\alt<1>{\begin{block}{\textsc{EDP} } +\vspace*{-0.4cm} +\begin{align*} + \text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\ + \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B +\end{align*} +\end{block} +} +{ +\begin{block}{Convex Relaxation} +\vspace*{-0.4cm} +\begin{align*} + \text{Maximize}\qquad &L(\lambda) = \log \det (I+\sum_{i\in [N]}\lambda_ix_ix_i^T) \\ + \text{subj. to}\qquad &\textstyle\sum_{i\in S}\lambda_ic_i\leq B, \lambda_i\in [0,1] +\end{align*} +\end{block} +} +\pause +\pause + \begin{itemize} + \item Poly-time: $L$ is convex and self-concordant + \pause + \vspace{0.5cm} + \item Close to $V(OPT)$:\pause + \vspace{0.5cm} + \begin{block}{Technical Lemma} + \begin{displaymath} + L^* \leq 2 V(OPT) + V(\{i^*\}) + \end{displaymath} + \end{block} + \end{itemize} + \pause + Proved using \emph{pipage rounding} [Ageev and Sviridenko 2004] +\end{frame} +\begin{comment} \vspace{0.5cm} \pause @@ -518,7 +717,6 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \end{column} \end{columns} \end{frame} - \begin{frame}{Sketch of proof (2)} \begin{displaymath} L^* = \arg\max_{\lambda\in [0,1]^n} \left\{\log\det\left(I_d + \sum_i \lambda_i x_i x_i^T\right)\mid \sum_{i=1}^n\lambda_i c_i\leq B\right\} @@ -537,8 +735,9 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \end{block} \end{itemize} \end{frame} +\end{comment} -\section{Generalization} +\section{Extensions \& Generalization} \begin{frame}{Outline} \tableofcontents[currentsection] |
