1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
|
\documentclass{beamer}
\usepackage[utf8x]{inputenc}
\usepackage[greek,english]{babel}
\usepackage[LGR,T1]{fontenc}
\usepackage{amsmath,bbm,verbatim}
\usepackage{algpseudocode,algorithm}
\usepackage{graphicx}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\usetheme{Boadilla}
\newcommand{\E}{{\tt E}}
\title[EconCS Seminar]{Budget Feasible Mechanisms for Experimental Design}
\author[Horel, Ioannidis, Muthu]{Thibaut Horel$^*$, \alert{Stratis Ioannidis}$^\dagger$, and S. Muthukrishnan$^\ddagger$}
\institute[]{$^*$INRIA-ENS, $^\dagger$Technicolor, $^\ddagger$Rutgers University}
\setbeamercovered{transparent}
\setbeamertemplate{navigation symbols}{}
%\AtBeginSection[]
%{
%\begin{frame}<beamer>
%\frametitle{Outline}
%\tableofcontents[currentsection]
%\end{frame}
%}
\newcommand{\ie}{\emph{i.e.}}
\newcommand{\eg}{\emph{e.g.}}
\newcommand{\etc}{\emph{etc.}}
\newcommand{\reals}{\ensuremath{\mathbb{R}}}
\usefonttheme[onlymath]{serif}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\section{Introduction}
\begin{frame}{Motivation:A Data Market}
\begin{center}
\includegraphics<1>[scale=0.4]{st1a.pdf}
\includegraphics<2>[scale=0.4]{st1b.pdf}
\includegraphics<3>[scale=0.4]{st1c.pdf}
\includegraphics<4>[scale=0.4]{st1d.pdf}
\includegraphics<5>[scale=0.4]{st1dd.pdf}
\includegraphics<6>[scale=0.4]{st1e.pdf}
\includegraphics<7>[scale=0.4]{st1f.pdf}
\includegraphics<8>[scale=0.4]{st1g.pdf}
\end{center}
% \begin{center}
% \begin{overprint}
% \onslide<1-8>\begin{center}\end{center}
% \end{overprint}
% \end{center}
\end{frame}
\begin{frame}{Challenges}
% \begin{overprint}
\begin{itemize}
\item<1-> Value of data?
\visible<3-4>{\begin{itemize}
\item Experimental Design
\end{itemize}}
\vspace*{1cm}
\item<2-> Strategic users?
\visible<4>{\begin{itemize}
\item Budget Feasible Auctions [Singer 2010]
\end{itemize}}
\end{itemize}
% \end{overprint}
\end{frame}
\begin{frame}{Contributions}
\pause
\begin{itemize}
\item Experimental design when users are strategic
\pause
\vspace*{1cm}
\item Linear Regression
\pause
\begin{itemize}
\item \emph{Deterministic}, truthful, budget feasible, 12.98-appriximate mechanism.
\pause
\item Singer 2010, Chen 2011:\\ \emph{Randomized}, universaly truthful, budget feasible, 7.91-approximate mechanism.
\end{itemize}
\pause
\vspace*{1cm}
\item Generalization to other machine learning tasks.
\end{itemize}
\end{frame}
\section{Setting}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Experimental Design}
\begin{center}
\includegraphics<1>[scale=0.4]{st2.pdf}
\includegraphics<2>[scale=0.4]{st3.pdf}
\includegraphics<3>[scale=0.4]{st4.pdf}
\includegraphics<4>[scale=0.4]{st5.pdf}
\includegraphics<5>[scale=0.4]{st6.pdf}
\includegraphics<6>[scale=0.4]{st7.pdf}
\includegraphics<7>[scale=0.4]{st8.pdf}
\includegraphics<8>[scale=0.4]{st9.pdf}
\end{center}
\begin{center}
\begin{overprint}
\onslide<1>\begin{center}$N$ users (``experiment subjects'') \end{center}
\onslide<2>
\begin{center}
$x_i\in \reals^d$: public features (\eg, age, gender, height, \etc)
\end{center}
\onslide<3>
\begin{center}
$y_i\in \reals$: private data (\eg, survey answer, medical test outcome, etc.)
\end{center}
\onslide<4>
%\begin{}
\textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t.
\begin{displaymath}
y_i = \beta^T x_i + \varepsilon_i,\quad
\varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i=1,\ldots,N
\end{displaymath}
%$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$
%\end{center}
\onslide<5-7>
\begin{center}
Experimenter {\tt E} wishes to learn $\beta$ and can perform at most $k$ experiments.
\end{center}
\onslide<8>
\begin{center}{\tt E} computes estimate $\hat{\beta}$ of $\beta$ through ridge regression.
\end{center}
\end{overprint}
\end{center}
\end{frame}
\begin{frame}{Linear (Ridge) Regression}
%There exists $\beta\in \reals^d$ s.t.
% \begin{displaymath}
% y_i = \beta^T x_i + \varepsilon_i,\quad
% \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i=1,\ldots,N
% \end{displaymath}
\visible<1->{Let $S\subset [N]\equiv \{1,\ldots,N\}$ be the set of experiments performed.\\\medskip}
\visible<2->{Assume that \E\ has a \emph{prior} on $\beta$:
$$\beta \sim \mathcal{N}(0,\sigma^2 R). $$}
\visible<3->{Maximum a-posteriori estimation:
\begin{align*}
\hat{\beta} &= \argmax_{\beta\in\reals^d} \mathbf{P}(\beta\mid y_i, i\in S) \\
&=\argmin_{\beta\in\reals^d} \big(\sum_{i\in S} (y_i - {\beta}^Tx_i)^2
+ \only<3-4>{\alert<4->{{\beta}^TR^{-1}\beta}\big)} \only<5>{\alert{\|\beta\|_2^2}\big)~~~~~}
%= (R+{X_S}^TX_S)^{-1}X_S^Ty_S
\end{align*}
}
\visible<4->{\hspace*{3in}\alert{Ridge Regression}\\}
\visible<5>{\hspace*{3in}$R=I$: homotropic prior}
\end{frame}
\begin{frame}{Value Function}
Select $S\subset [N]$, s.t. $|S|\leq k$.
\\\bigskip
\visible<2->{
Information Gain/D-optimality Criterion:
\begin{align*}
V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
\visible<3->{& = \frac{1}{2}\log\det (R^{-1}+X_S^TX_S)}
\end{align*}
\visible<3->{where $$X_S=[x_i^T]_{i\in S}\in \reals^{|S|\times d}$$}
}
\end{frame}
%\begin{frame}{Classic Experimental Design}
%\begin{center}
%\includegraphics[scale=0.3]{st10.pdf}
%\end{center}
%\begin{align*}
%\text{Maximize}& & V(S) &= \log \det (R^{-1}+X^T_SX_S) \\
%\text{subj. to}& & |S|&\leq k
%\end{align*}
%\end{frame}
\begin{frame}{Cardinality vs. Budget Constraint}
\begin{center}
\includegraphics<1>[scale=0.3]{st10a.pdf}
\includegraphics<2>[scale=0.3]{st10b.pdf}
\includegraphics<3>[scale=0.3]{st10c.pdf}
\includegraphics<4>[scale=0.3]{st10d.pdf}
\includegraphics<5->[scale=0.3]{st10f.pdf}
\end{center}
\begin{center}
\begin{overprint}
\onslide<1>\begin{align*}
\text{Maximize}& & V(S) &= \log \det (R^{-1}+X^T_SX_S) \\
\text{subj. to}& & |S|&\leq k
\end{align*}
\onslide<2>\begin{center}
Each subject $i\in [N]$ has a cost $c_i\in \reals_+$
\end{center}
\onslide<3>
\begin{center}
\E\ has a budget $B$.
\end{center}
\onslide<4-5>
\begin{center}
\E\ can pay subjects\visible<5>{; $y_i$ is revealed only if $i$ is paid.}
\end{center}
\onslide<6->
\begin{block}{\textsc{Experimental Design Problem (EDP)} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det (\alert<7>{I}+X^T_SX_S) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
\visible<7>{\alert{$R=I$: homotropic prior}}
\end{overprint}
\end{center}
\end{frame}
\begin{frame}{Full-Information Setting}
\begin{block}{\textsc{Experimental Design Problem (EDP)} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det ({I}+X^T_SX_S) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
\begin{itemize}
\item<2-> EDP is NP-hard
\item<3-> $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$
\item<4-> $\frac{1}{1-1/e}$-approximable (Sviridenko 2004, Krause and Guestrin 2005)
\end{itemize}
\end{frame}
\begin{frame}{Strategic Subjects}
%\begin{center}
%\includegraphics<1->[scale=0.3]{st10c.pdf}
%\end{center}
%\begin{overprint}
\begin{itemize}
\visible<2->{\item
Subjects are \alert{strategic} and may lie about costs $c_i$.}\\\bigskip
\visible<3>{\item
Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).}
\end{itemize}
\end{frame}
\begin{frame}{Budget Feasible Mechanism Design [Singer 2010]}
\begin{center}
\includegraphics<1>[scale=0.3]{st11a.pdf}
\includegraphics<2>[scale=0.3]{st11b.pdf}
\includegraphics<3>[scale=0.3]{st11c.pdf}
\includegraphics<4>[scale=0.3]{st11d.pdf}
\end{center}
\begin{itemize}
%\item<1->Fix budget $B$ and value function $V:2^{[N]}\to\reals_+$
\item<2->Let $c=[c_i]_{i\in [N]}$ be the subject costs.
\item<3-> A mechanism $\mathcal{M}(c)=(S(c),p(c))$ comprises
\begin{itemize}
\item<3-> an \alert{allocation function} $S:\reals_+^N\to 2^{[N]}$, and
\item<4> a \alert{payment function} $p:\reals_+^N\to \reals_+^N$.
\end{itemize}
\end{itemize}
\end{frame}
%\section{Budget feasible mechanism design}
%\begin{frame}{Budget Feasible Mechanism Design [Singer 2010]}
%\begin{itemize}
% \item set of $N$ sellers: $\mathcal{A} = \{1,\ldots,N\}$; a buyer
% \vspace{0.3cm}
% \pause
% \item $V$ value function of the buyer, $V:2^\mathcal{A}\rightarrow \mathbb{R}^+$
% \vspace{0.3cm}
% \pause
% \item $c_i\in\mathbb{R}^+$ price of seller's $i$ good
% \vspace{0.3cm}
% \pause
% \item $B$ budget constraint of the buyer
%\end{itemize}
%
%\vspace{0.5cm}
%\pause
%
%\begin{block}{Goal}
% \begin{itemize}
% \item Find $S\subset \mathcal{A}$ \alert{maximizing} $V(S)$
% \vspace{0.3cm}
% \item Find \alert{payment} $p_i$ to seller $i\in S$
% \end{itemize}
%\end{block}
%\end{frame}
\begin{frame}{Objectives}
Mechanism $\mathcal{M}=(S,p)$ must be:
\pause
\vspace{0.3cm}
\begin{itemize}
\item Normalized: $p_i=0$ if $i\notin S$.
\vspace{0.2cm}
\pause
\item Individually Rational: $p_i\geq c_i,\;i\in S$
\vspace{0.2cm}
\pause
\item Truthful: $p_i(c_i,c_{-i})-\mathbbm{1}_{i\in S(c_i,c_{-i})}\cdot c_i \geq p_i(c_i',c_{-i})-\mathbbm{1}_{i\in S(c_i',c_{-i})}\cdot c_i $
\vspace{0.2cm}
\pause
\item budget feasible: $\sum_{i\in S} p_i \leq B$
\vspace{0.2cm}
\end{itemize}
\pause
\vspace{0.3cm}
Mechanism must be:
\vspace{0.3cm}
\pause
\begin{itemize}
\item computationally efficient: polynomial time
\pause
\vspace{0.2cm}
\item constant approximation: $V(OPT) \leq \alpha V(S)$ with:
\begin{displaymath}
OPT = \arg\max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\}
\end{displaymath}
\end{itemize}
\end{frame}
\begin{frame}{Known Results}
When $V$ is submodular:
\vspace{1cm}
\pause
\begin{itemize}
\item \alert{randomized}, universally truthful, budget feasible mechanism,
approximation ratio: $7.91$ [Singer 2010, Chen \emph{et al.}, 2011]
\vspace{1cm}
\pause
\item \alert{deterministic} mechanisms for specific submodular $V$ functions:
\vspace{0.3cm}
\begin{itemize}
\item Knapsack: $2+\sqrt{2}$ [Singer 2010, Chen \emph{et al.}, 2011]
\vspace{0.3cm}
\item Matching: 7.37 [Singer, 2010]
\vspace{0.3cm}
\item Coverage: 31 [Singer, 2012]
\vspace{0.3cm}
\end{itemize}
\end{itemize}
\end{frame}
\begin{comment}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Linear Regression}
\begin{center}
\includegraphics<1-4>[scale=0.5]{5.pdf}
\includegraphics<5>[scale=0.5]{6.pdf}
\includegraphics<6>[scale=0.5]{7.pdf}
\includegraphics<7>[scale=0.5]{8.pdf}
\end{center}
\begin{center}
\begin{overprint}
\onslide<1>\begin{center}$N$ users\end{center}
\onslide<2>
\begin{center}
$x_i$: public features (e.g. age, gender, height, etc.)
\end{center}
\onslide<3>
\begin{center}
$y_i$: private data (e.g. disease, etc.)
\end{center}
\onslide<4>
\begin{center}
Gaussian Linear model: $y_i = \beta^Tx_i + \varepsilon_i$
\end{center}
\begin{displaymath}
\beta^* = \arg\min_\beta \sum_i |y_i-\beta^Tx_i|^2
\end{displaymath}
\end{overprint}
\end{center}
\end{frame}
\begin{frame}{Experimental design}
\begin{itemize}
\item Public vector of features $x_i\in\mathbb{R}^d$
\item Private data $y_i\in\mathbb{R}$
\end{itemize}
\vspace{0.5cm}
Gaussian linear model:
\begin{displaymath}
y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
\varepsilon_i\sim\mathcal{N}(0,\sigma^2)
\end{displaymath}
\pause
\vspace{0.5cm}
Which users to select?\pause{} Experimental design $\Rightarrow$ D-optimal criterion
\vspace{0.5cm}
\begin{block}{Experimental Design}
\begin{displaymath}
\textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right)\quad \textsf{\alert{subject to}}\quad |S|\leq k
\end{displaymath}
\end{block}
\end{frame}
\begin{frame}{Budgeted Experimental design}
\begin{displaymath}
\textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right)\quad \textsf{\alert{subject to}}\quad \sum_{i\in S}c_i\leq B
\end{displaymath}
\vspace{1cm}
\begin{itemize}
\item the non-strategic optimization problem is NP-hard
\vspace{0.3cm}
\pause
\item $V$ is submodular
\vspace{0.3cm}
\pause
\item previous results give a randomized budget feasible mechanism
\vspace{0.3cm}
\pause
\item deterministic mechanism?
\end{itemize}
\end{frame}
\begin{frame}{Main result}
\end{comment}
\section{Main Result}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Our Main Result}
\begin{theorem}
There exists deterministic, budget feasible, individually rational and truthful mechanism for
EDP which runs in polynomial time. Its
approximation ratio is:
\begin{displaymath}
\frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}+\varepsilon
\simeq 12.98 +\varepsilon
\end{displaymath}
\end{theorem}
\end{frame}
\begin{frame}{Sketch of proof}
\begin{block}{Mechanism (Chen et. al, 2011) for submodular $V$}
\begin{itemize}
\item Find $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Return:
\begin{itemize}
\item $\{i^*\}$ if $V(\{i^*\}) \geq \only<1-2>{V(OPT_{-i^*})}\only<3>{\alert{V(OPT_{-i^*})}}\only<4->{\alert{L^*}}$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\pause
Valid mechanism, approximation ratio: 8.34
\vspace{0.5cm}
\pause
\alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute
\vspace{0.5cm}
\pause
\begin{columns}[c]
\begin{column}{0.53\textwidth}
\alert{Solution:} Replace $V(OPT_{-i^*})$ with \alert<7>{$L^*$}:
\pause
\begin{itemize}
\item computable in polynomial time
\pause
\item close to $V(OPT_{-i^*})$
\end{itemize}
\end{column}
\pause
\begin{column}{0.45\textwidth}
\begin{itemize}
\item Knapsack (Chen et al., 2011)
\item Coverage (Singer, 2012)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Sketch of proof (2)}
\begin{displaymath}
L^* = \arg\max_{\lambda\in [0,1]^n} \left\{\log\det\left(I_d + \sum_i \lambda_i x_i x_i^T\right)\mid \sum_{i=1}^n\lambda_i c_i\leq B\right\}
\end{displaymath}
\vspace{1cm}
\begin{itemize}
\item polynomial time?\pause{} convex optimization problem
\pause
\vspace{0.5cm}
\item close to $V(OPT_{-i^*})$?\pause
\vspace{0.5cm}
\begin{block}{Technical lemma}
\begin{displaymath}
L^* \leq 2 V(OPT) + V(\{i^*\})
\end{displaymath}
\end{block}
\end{itemize}
\end{frame}
\section{Generalization}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Generalization}
\begin{itemize}
\item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$
\pause
\item prior knowledge of the experimenter: $f$ is a \alert{random variable}
\pause
\item \alert{uncertainty} of the experimenter: entropy $H(f)$
\pause
\item after observing $\{y_i,\; i\in S\}$, uncertainty: $H(f\mid S)$
\end{itemize}
\pause
\vspace{0.5cm}
\begin{block}{Value function: Information gain}
\begin{displaymath}
V(S) = H(f) - H(f\mid S),\quad S\subset\mathcal{A}
\end{displaymath}
\end{block}
\pause
\vspace{0.5cm}
$V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism
\end{frame}
\begin{frame}{Conclusion}
\begin{itemize}
\item Experimental design + Auction theory = powerful framework
\vspace{1cm}
\pause
\item deterministic mechanism for the general case? other learning tasks?
\vspace{1cm}
\pause
\item approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
\end{itemize}
\end{frame}
\end{document}
|