1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{amsmath, amsfonts, amsthm}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\input{definitions}
\begin{document}
Let $c$ be a cost vector in $[0,1]^n$, and $x_1,\ldots,x_n$, $n$ vectors in
$\mathbf{R}^d$ such that for all $i\in\{1,\ldots,n\}$, $b\leq \T{x_i}{x_i}\leq
1$ for some $b\in(0,1]$. Let us consider the following convex optimization
problem:
\begin{equation}\tag{$P_c$}\label{eq:primal}
\begin{split}
\mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n
\lambda_i x_i x_i^T\right)\\
\textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1}
\end{split}
\end{equation}
We denote by $L^*_c$ its optimal value.
Let $\alpha\in\mathbf{R}^+$, consider the perturbed optimization problem:
\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal}
\begin{split}
\mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n
\lambda_i x_i x_i^T\right)\\
\textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; \alpha\leq\lambda\leq \mathbf{1}
\end{split}
\end{equation}
and denote by $L^*_c(\alpha)$ its optimal value. Note that we have $L^*_c = L^*_c(0)$.
We will assume that $\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at
least one feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$.
Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}:
\begin{displaymath}
\mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)
+ \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda)
\end{displaymath}
so that:
\begin{displaymath}
L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
\end{displaymath}
Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.
Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
\begin{gather*}
\partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
\mu_i^*(\lambda_i^* - \alpha) = 0\\
\nu_i^*(1 - \lambda_i^*) = 0
\end{gather*}
\begin{lemma}\label{lemma:derivative-bounds}
Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
\begin{displaymath}
\forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
\end{displaymath}
\end{lemma}
\begin{proof}
Let us define:
\begin{displaymath}
S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
\quad\mathrm{and}\quad
S_k \defeq I_d + \sum_{i=1}^n x_i\T{x_i}
\end{displaymath}
We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
$S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
is the right-hand side of the lemma.
For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
$\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
Using the Sherman-Morrison formula, for all $k\geq 1$:
\begin{displaymath}
\T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
- \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
\end{displaymath}
By the Cauchy-Schwarz inequality:
\begin{displaymath}
(\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
\end{displaymath}
Hence:
\begin{displaymath}
\T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
\end{displaymath}
But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
$0\leq a\leq 1$, so:
\begin{displaymath}
\T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
\end{displaymath}
By induction:
\begin{displaymath}
\T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
\end{displaymath}
Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
of the lemma's inequality.
\end{proof}
\begin{lemma}\label{lemma:proximity}
We have:
\begin{displaymath}
L^*_c - \alpha n^2(n-1)\leq L^*_c(\alpha) \leq L^*_c
\end{displaymath}
In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2(n-1)$.
\end{lemma}
\begin{proof}
$\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the
maximum value of the $L$ function over a set-decreasing domain, which gives
the rightmost inequality.
Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
\begin{displaymath}
L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
\end{displaymath}
Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
= \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
- \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
\geq L(\lambda)$. Hence,
\begin{displaymath}
L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
\end{displaymath}
for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:primal}:
\begin{equation}\label{eq:local-1}
L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
\end{equation}
Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
\{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
$\eqref{eq:perturbed-primal}$. From the KKT conditions we see that:
\begin{displaymath}
M = \{i|\lambda_i^* = \alpha\}
\end{displaymath}
Let us first assume that, $|M|\geq 1$, then we have that $\T{c}\lambda^*
= 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
which would increase the value of the objective function and contradict the
optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
$\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again
contradicts the optimality of $\lambda^*$. Let us write:
\begin{displaymath}
1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
\leq \alpha (n-1) + (n-1)\max_{i\in \bar{M}} c_i
\end{displaymath}
That is:
\begin{equation}\label{local-2}
\max_{i\in\bar{M}} c_i \geq \frac{1 - (n-1)\alpha}{n-1}> \frac{1}{n(n-1)}
\end{equation}
where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
\begin{equation}\label{local-3}
\mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*
\end{equation}
since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.
Furthermore, using the KKT conditions again, we have that:
\begin{equation}\label{local-4}
\xi^* = \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
= \frac{1}{\max_{i\in\bar{M}} c_i}
\end{equation}
where the inequality uses Lemma~\ref{lemma:derivative-bounds}.
Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
\begin{displaymath}
\sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2(n-1)
\end{displaymath}
Finally let us write:
\begin{displaymath}
\T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*
\end{displaymath}
Either $|M|=0$, in which case $\T{\mathbf{1}}\mu^* = 0$, either $|M|\geq
1$, in which case $\T{\mathbf{1}}\mu^*\leq n^2(n-1)$ from the inequality above.
In both cases, $\T{\mathbf{1}}\mu^* \leq n^2(n-1)$, which, in addition to
\eqref{eq:local-1} proves the lemma.
\end{proof}
\begin{lemma}\label{lemma:monotonicity}
If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
\begin{displaymath}
L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n}
\end{displaymath}
\end{lemma}
\begin{proof}
Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that, $\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta$, we get similarly to Lemma~\ref{lemma:proximity}:
\begin{displaymath}
L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta
\end{displaymath}
for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
\begin{displaymath}
L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta
\end{displaymath}
since $\lambda_i^*\geq \alpha$.
Using the KKT conditions for $(P_{c', \alpha})$, we can write:
\begin{displaymath}
\xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
\end{displaymath}
with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof.
\end{proof}
\begin{proposition}
Let $\delta\in(0,1]$. For any $\varepsilon\in(0,1]$, there exists
a routine which computes an approximate solution $\tilde{L}^*_c$ to
\eqref{eq:primal} such that:
\begin{enumerate}
\item $|\tilde{L}^*_c - L^*_c| \leq \varepsilon$
\item for all $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, $\tilde{L}^*_c \leq \tilde{L}^*_{c'}$
\item the routine's running time is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$
\end{enumerate}
\end{proposition}
\begin{proof}
Let $\varepsilon$ in $(0, 1]$. The routine works as follows: set $\alpha\defeq
\varepsilon(\delta + n^2(n-1))^{-1}$ and return an approximation $\tilde{L}^*_c$ of
$L^*_c(\alpha)$ with an accuracy $\frac{1}{2^{n+1}}\alpha\delta b$ computed by
a standard convex optimization algorithm. Note that this choice of $\alpha$
implies $\alpha<\frac{1}{n}$ as requested.
\begin{enumerate}
\item using Lemma~\ref{lemma:proximity}:
\begin{displaymath}
|\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c|
\leq \alpha\delta + \alpha n^2(n-1) = \varepsilon
\end{displaymath}
\item let $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, then:
\begin{displaymath}
\tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}}
\geq L^*_c + \frac{\alpha\delta b}{2^{n+1}}
\geq \tilde{L}^*_c
\end{displaymath}
where the first and inequality come from the accuracy of the approximation, and
the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
\item the accuracy of the approximation $\tilde{L}^*_c$ is:
\begin{displaymath}
A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2(n-1))}
\end{displaymath}
\sloppy
hence, the standard convex optimization algorithm runs in time $O(poly(n, d,\log\log A^{-1}))$. Note that:
\begin{displaymath}
\log\log A^{-1} = O\bigg(\log n\; \log\log\frac{1}{\epsilon\delta b}\bigg)
\end{displaymath}
which yields the wanted running time for the routine.\qedhere
\end{enumerate}
\end{proof}
\end{document}
|