summaryrefslogtreecommitdiffstats
path: root/main.tex
blob: cfb7799141b6b88563d15eff0541dabaadcc1284 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
\subsection{D-Optimality Criterion}
Ideally, motivated by the $D$-optimality criterion, we would like to design a mechanism that maximizes \eqref{dcrit} within a good approximation ratio. As \eqref{dcrit} may take arbitrarily small negative values, to define a meaningful approximation we consider  the (equivalent) maximization of $V(S) = f(\det\T{X_S}X_S )$, for some strictly increasing, on-to function $f:\reals_+\to\reals_+$. However, the following lower bound implies that such an optimization goal cannot be attained under the costraints of  truthfulness, budget feasibility, and individional rationallity.

\begin{lemma}
For any $M>1$, there is no $M$-approximate, truthful, budget feasible, individionally rational mechanism for budget feasible experiment design with value fuction $V(S) = \det{\T{X_S}X_S}$.
\end{lemma}
\begin{proof}
\input{proof_of_lower_bound1}
\end{proof}

This negative result motivates us into looking at the following modified objective:
\begin{align}V(S) = \log\det(I_d+\T{X_S}X_S), \label{modified}\end{align} where $I_d\in \reals^{d\times d}$ is the identity matrix.
One possible interpretation of \eqref{modified} is that, prior to the auction, the experimenter has free access to $d$ experiments whose features form an ortho-normal basis in $\reals^d$. However, \eqref{modified} can also be motivated in the context of \emph{Bayesian experimental design} \cite{chaloner1995bayesian}. In short, the objective \eqref{modified} arises naturally when the experimenter retrieves the model $\beta$ through \emph{ridge regression}, rather than the linear regression \eqref{leastsquares} over the observed data; we explore this connection in Section~\ref{sec:bed}. From a practical standpoint, \eqref{modified} is a good approximation of \eqref{dcrit} when the number of experiments is large. Crucially, \eqref{modified} is submodular and satifies $V(\emptyset) = 0$, allowing us to use the extensive machinery for the optimization of submodular functions, as well as recent results in the context of budget feasible auctions. 

\subsection{Truthful, Constant Approximation Mechanism}

In this section we present a mechanism for \EDP. Previous works on maximizing
submodular functions \cite{nemhauser, sviridenko-submodular} and designing
auction mechanisms for submodular utility functions \cite{singer-mechanisms,
chen, singer-influence} rely on a greedy heuristic. In this heuristic, points
are added to the solution set according to the following greedy selection rule:
assume that you have already selected a set $S$ of point, then the next point
to be selected is:
\begin{displaymath}
    i = \argmax_{j\in\mathcal{N}\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}
\end{displaymath}
This is the generalization of the \emph{value-per-cost} ratio used in greedy
heuristic for knapsack  problems. However note that for general submodular
functions, the value of a point depends on the set of points which have already
been selected.

Unfortunately, even for the non-strategic case, the greedy heuristic gives an
unbounded approximation ratio. It has been noted by Khuller et al.
\cite{khuller} that for the maximum coverage problem, taking the maximum
between the greedy solution and the point of maximum value gives
a $\frac{2e}{e-1}$ approximation ratio. In the general case, let us recall
lemma 3.1 from \cite{singer-influence} which follows from \cite{chen}:

\begin{lemma}[Singer \cite{singer-influence}]\label{lemma:greedy-bound}
Let $S_G$ be the set computed by the greedy heuristic and $i^*$ the point of
maximum value:
\begin{displaymath}
    i^* = \argmax_{i\in\mathcal{N}} V(i)
\end{displaymath}
then the following inequality holds:
\begin{displaymath}
OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big)
\end{displaymath}
\end{lemma}

Hence, taking the maximum between the greedy set and the point of maximum value
yields an approximation ratio of $\frac{5e}{e-1}$. However, Singer
\cite{singer-influence} notes that this approach breaks incentive compatibility
and therefore cannot be directly applied to the strategic case.

Two approaches have been studied to deal with the strategic case and rely on
comparing the point of maximum value to a quantity which can be proven to be
not too far from the greedy solution and maintains incentive compatibility.
\begin{itemize}
\item In \cite{chen}, the authors suggest using 
$OPT(V,\mathcal{N}\setminus\{i^*\}, B)$ where $i^*$ is the point of maximum
value. While this yields an approximation ratio of 8.34, in the general case,
the optimal value cannot be computed in polynomial time.
\item For the set coverage problem, Singer \cite{singer-influence} uses
a relaxation of the value function which can be proven to have a constant
approximation ratio to the value function.
\end{itemize}

Here, we will use the following relaxation of the value function \eqref{vs}.
Let us define the function $L_\mathcal{N}$:
\begin{displaymath}
    \forall\lambda\in[0,1]^{|\mathcal{N}|}\,\quad L_{\mathcal{N}}(\lambda) \defeq
    \log\det\left(I_d + \sum_{i\in\mathcal{N}} \lambda_i x_i \T{x_i}\right)
\end{displaymath}

Our mechanism for \EDP{} is presented in Algorithm~\ref{mechanism}.

\begin{algorithm}
    \caption{Mechanism for \EDP{}}\label{mechanism}
    \begin{algorithmic}[1]
    \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
    \State $x^* \gets \argmax_{x\in[0,1]^{|\mathcal{N}|}} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
                                    \mid c(x)\leq B\}$
        \Statex
        \If{$L(x^*) < CV(i^*)$}
            \State \textbf{return} $\{i^*\}$
        \Else
            \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
            \State $S_G \gets \emptyset$
            \While{$c_i\leq \frac{B}{2}\frac{V(S_G\cup\{i\})-V(S_G)}{V(S_G\cup\{i\})}$}
                \State $S_G \gets S_G\cup\{i\}$
                \State $i \gets \argmax_{j\in\mathcal{N}\setminus S_G}
                \frac{V(S_G\cup\{j\})-V(S_G)}{c_j}$
            \EndWhile
            \State \textbf{return} $S_G$
        \EndIf
    \end{algorithmic}
\end{algorithm}

\emph{Remarks}
\begin{enumerate}
    \item the function $L_\mathcal{N}$ is concave (see
        lemma~\ref{lemma:concave}) thus the maximization step on line 2 of the
        mechanism can be computed in polynomial time, which proves that the
        mechanism overall has a polynomial complexity.
    \item the stopping rule in the while loop is more sophisticated than just
        checking against the budget constraint ($c(S) \leq B$). This is to
        ensure budget feasibility (see lemma~\ref{lemma:budget-feasibility}).
\end{enumerate}

We can now state the main result of this section:
\begin{theorem}\label{thm:main}
    The mechanism described in Algorithm~\ref{mechanism} is truthful,
    individually rational and budget feasible. Furthermore, choosing:
    \begin{displaymath}
        C = C^* =  \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)}
    \end{displaymath}
    we get an approximation ratio of:
    \begin{displaymath}
        1 + C^* = \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)}\simeq 18.68
    \end{displaymath}
\end{theorem}

\begin{proof}
\emph{Truthfulness.} The algorithm only describes the allocation rule.
However, it suffices to prove that the mechanism is monotone, then Myerson's
theorem (see theorem~\ref{thm:myerson}) ensures us that by paying each
allocated user his threshold payment yields a truthful mechanism. The proof of
the monotonicity has already been done in \cite{singer-influence} and is given
here in lemma~\ref{lemma:monotone} below for the sake of completeness.

\emph{Budget feasibility.} Thanks to the analysis of the threshold
payment in \cite{chen}, the budget feasibility follows easily. The
proof is given in lemma~\ref{lemma:budget-feasibility} below. 

\emph{Approximation ratio.} The proof of the approximation ratio follows the
same path as in \cite{chen} and is done in lemma~\ref{lemma:approx}. Our main
contribution is to prove that the relaxation $L_\mathcal{N}$ has a constant
approximation ratio to the optimal solution (lemma~\ref{lemma:relaxation}). This
follows from the \emph{pipage rounding} method described in \cite{pipage} where
$L_\mathcal{N}$ is first compared to the \emph{multilinear relaxation} of the
value function (lemma~\ref{lemma:relaxation-ratio}) for which it is possible to
round solutions (making fractional components integral) while maintaining
feasibility (lemma~\ref{lemma:rounding}).
\end{proof}

\begin{lemma}\label{lemma:monotone}
The mechanism is monotone.
\end{lemma}

\begin{proof}
    We assume by contradiction that there exists a user $i$ that has been
    selected by the mechanism and that would not be selected had he reported
    a cost $c_i'\leq c_i$ (all the other costs staying the same).

    If $i\neq i^*$ and $i$ has been selected, then we are in the case where
    $L(x^*) \geq C V(i^*)$ and $i$ was included in the result set by the greedy
    part of the mechanism. By reporting a cost $c_i'\leq c_i$, using the
    submodularity of $V$, we see that $i$ will satisfy the greedy selection
    rule:
    \begin{displaymath}
        i = \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\})
        - V(S)}{c_j}
    \end{displaymath}
    in an earlier iteration of the greedy heuristic. Let us denote by $S_i$
    (resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$
    (resp. $c_i'$). We have $S_i'\subseteq S_i$. Moreover:
    \begin{align*}
        c_i' & \leq c_i \leq
        \frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}\\
        & \leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})}
    \end{align*}
    Hence $i$ will still be included in the result set.

    If $i = i^*$, $i$ is included iff $L(x^*) \leq C V(i^*)$. Reporting $c_i'$
    instead of $c_i$ does not change the value $V(i^*)$ nor $L(x^*)$ (which is
    computed over $\mathcal{N}\setminus\{i^*\}$). Thus $i$ is still included by
    reporting a different cost.
\end{proof}

\begin{lemma}\label{lemma:budget-feasibility}
The mechanism is budget feasible.
\end{lemma}

\begin{proof}
Let us denote by $S_G$ the set selected by the greedy heuristic in the
mechanism of Algorithm~\ref{mechanism}. Let $i\in S_G$, let us also denote by
$S_i$ the solution set that was selected by the greedy heuristic before $i$ was
added. Recall from \cite{chen} that the following holds for any submodular
function: if the point $i$ was selected by the greedy heuristic, then:
\begin{equation}\label{eq:budget}
    c_i \leq \frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)} B
\end{equation}

Assume now that our mechanism selects point $i^*$. In this case, his payment
his $B$ and the mechanism is budget-feasible.

Otherwise, the mechanism selects the set $S_G$. In this case, \eqref{eq:budget}
shows that the threshold payment of user $i$ is bounded by:
\begin{displaymath}
\frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B
\end{displaymath}

Hence, the total payment is bounded by:
\begin{displaymath}
    \sum_{i\in S_M} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B \leq B
\end{displaymath}
\end{proof}

\begin{lemma}\label{lemma:approx}
    Let $S^*$ be the set allocated by the mechanism. Let us write:
    \begin{displaymath}
        C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
        (e-1) -10e  +2}\right)\right)
    \end{displaymath}

    Then:
    \begin{displaymath}
        OPT(V, \mathcal{N}, B) \leq
        C_\text{max}\cdot V(S^*) 
    \end{displaymath}
\end{lemma}

\begin{proof}

    If the condition on line 3 of the algorithm holds, then:
    \begin{displaymath}
        V(i^*) \geq \frac{1}{C}L(x^*) \geq
        \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B)
    \end{displaymath}

    But:
    \begin{displaymath}
        OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i\}, B) + V(i^*)
    \end{displaymath}

    Hence:
    \begin{displaymath}
        V(i^*) \geq \frac{1}{C+1} OPT(V,\mathcal{N}, B)
    \end{displaymath}

    If the condition of the algorithm does not hold, by applying lemmas
    \ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
    \begin{align*}
        V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C}
        \big(4 OPT(V,\mathcal{N}, B) + 2 V(i^*)\big)\\
        & \leq \frac{1}{C}\left(\frac{4e}{e-1}\big(3 V(S_G)
        + 2 V(i^*)\big)
        + V(i^*)\right)
    \end{align*}
    
    Thus:
    \begin{align*}
        V(i^*) \leq \frac{12e}{C(e-1)- 10e + 2} V(S_G)
    \end{align*}

    Finally, using again lemma~\ref{lemma:greedy-bound}, we get:
    \begin{displaymath}
        OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{8e}{C
        (e-1) -10e  +2}\right) V(S_G)\qed
    \end{displaymath}
\end{proof}

The optimal value for $C$ is:
\begin{displaymath}
    C^* = \argmin_C C_{\textrm{max}}
\end{displaymath}

This equation has two solutions. Only one of those is such that:
\begin{displaymath}
    C(e-1) -10e  +2 \geq 0
\end{displaymath}
which is needed in the proof of the previous lemma. Computing this solution,
gives the result of the theorem.

\subsection{An approximation ratio for $L_\mathcal{N}$}\label{sec:relaxation}

Our main contribution is lemma~\ref{lemma:relaxation} which gives an
approximation ratio for $L_\mathcal{N}$ and is key in the proof of
theorem~\ref{thm:main}.

We say that $R_\mathcal{N}:[0,1]^{|\mathcal{N}|}\rightarrow\reals$ is
a relaxation of the value function $V$ over $\mathcal{N}$ if it coincides with
$V$ at binary points. Formally, for any $S\subseteq\mathcal{N}$, let
$\mathbf{1}_S$ denote the indicator vector of $S$. $R_\mathcal{N}$ is
a relaxation of $V$ over $\mathcal{N}$ iff:
\begin{displaymath}
    \forall S\subseteq\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S)
\end{displaymath}

We can extend the optimisation problem defined above to a relaxation by
extending the cost function:
\begin{displaymath}
    \forall \lambda\in[0,1]^{|\mathcal{N}|},\; c(\lambda)
    = \sum_{i\in\mathcal{N}}\lambda_ic_i
\end{displaymath}
The optimisation problem becomes:
\begin{displaymath}
    OPT(R_\mathcal{N}, B) =
    \max_{\lambda\in[0,1]^{|\mathcal{N}|}}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\}
\end{displaymath}

The relaxations we will consider here rely on defining a probability
distribution over subsets of $\mathcal{N}$.

Let $\lambda\in[0,1]^{|\mathcal{N}|}$, let us define:
\begin{displaymath}
    P_\mathcal{N}^\lambda(S) = \prod_{i\in S}\lambda_i
    \prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i)
\end{displaymath}
$P_\mathcal{N}^\lambda(S)$ is the probability of picking the set $S$ if we select
a subset of $\mathcal{N}$ at random by deciding independently for each point to
include it in the set with probability $\lambda_i$ (and to exclude it with
probability $1-\lambda_i$).

For readability, let us define $A(S) = I_d + \T{X_S}X_S$, so that the value
function is $V(S) = \log\det A(S)$.

We have already defined the function $L_\mathcal{N}$ which is a relaxation of
the value function. Note that it is possible to express it in terms of the
probabilities $P_\mathcal{N}$:
\begin{align*}
    L_{\mathcal{N}}(\lambda) 
    & = \log\det \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[A(S)\big]\\
    & = \log\det\left(\sum_{S\subseteq N}
        P_\mathcal{N}^\lambda(S)A(S)\right)\\
    & = \log\det\left(I_d + \sum_{i\in\mathcal{N}}
        \lambda_ix_i\T{x_i}\right)\\
    & \defeq \log\det \tilde{A}(\lambda)
\end{align*}

We will also use the \emph{multi-linear extension}:
\begin{align*}
    F_\mathcal{N}(\lambda) 
    & = \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[\log\det A(S)\big]\\
    & = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\
    & = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\
\end{align*}

\begin{lemma}\label{lemma:concave}
    The \emph{concave relaxation} $L_\mathcal{N}$ is concave\footnote{Hence
    this relaxation is well-named!}.
\end{lemma}

\begin{proof}
    This follows from the concavity of the $\log\det$ function over symmetric
    positive semi-definite matrices. More precisely, if $A$ and $B$ are two
    symmetric positive semi-definite matrices, then:
    \begin{multline*}
        \forall\alpha\in [0, 1],\; \log\det\big(\alpha A + (1-\alpha) B\big)\\
        \geq \alpha\log\det A + (1-\alpha)\log\det B
    \end{multline*}
\end{proof}

It has been observed already (see for example \cite{dughmi}) that the
multi-linear extension presents the cross-convexity property: it is convex along
any direction $e_i-e_j$ where $e_i$ and $e_j$ are two elements of the standard
basis. This property allows to trade between two fractional components of
a point without diminishing the value of the relaxation. The following lemma
follows is inspired by a similar lemma from \cite{dughmi} but also ensures that
the points remain feasible during the trade. 

\begin{lemma}[Rounding]\label{lemma:rounding}
    For any feasible $\lambda\in[0,1]^{|\mathcal{N}|}$, there exists a feasible
    $\bar{\lambda}\in[0,1]^{|\mathcal{N}|}$ such that at most one of its component is
    fractional, that is, lies in $(0,1)$ and:
    \begin{displaymath}
        F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})
    \end{displaymath}
\end{lemma}

\begin{proof}
    We give a rounding procedure which given a feasible $\lambda$ with at least
    two fractional components, returns some $\lambda'$ with one less fractional
    component, feasible such that:
    \begin{displaymath}
        F_\mathcal{N}(\lambda) \leq F_\mathcal{N}(\lambda')
    \end{displaymath}
    Applying this procedure recursively yields the lemma's result.

    Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
    fractional components of $\lambda$ and let us define the following
    function:
    \begin{displaymath}
        F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
        \quad\textrm{where} \quad
        \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
    \end{displaymath}

    It is easy to see that if $\lambda$ is feasible, then:
    \begin{multline}\label{eq:convex-interval}
        \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
        \frac{c_j}{c_i}\Big)\Big],\;\\
            \lambda_\varepsilon\;\;\textrm{is feasible}
    \end{multline}

    Furthermore, the function $F_\lambda$ is convex, indeed:
    \begin{align*}
        F_\lambda(\varepsilon)
        & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
        (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
        & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\
        & + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
        & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]\\
    \end{align*}
    Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
    \begin{multline*}
        \frac{c_i}{c_j}\mathbb{E}_{S'\sim
        P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
            V(S'\cup\{i\})+V(S'\cup\{i\})\\
        -V(S'\cup\{i,j\})-V(S')\Big]
    \end{multline*}
    which is positive by submodularity of $V$. Hence, the maximum of
    $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
    attained at one of its limit, at which either the $i$-th or $j$-th component of
    $\lambda_\varepsilon$ becomes integral.
\end{proof}

\begin{lemma}\label{lemma:relaxation-ratio}
    The following inequality holds:
    \begin{displaymath}
        \forall\lambda\in[0,1]^{|\mathcal{N}|},\; 
        \frac{1}{2}
        \,L_\mathcal{N}(\lambda)\leq
        F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
    \end{displaymath}
\end{lemma}

\begin{proof}

    We will prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
    F_\mathcal{N}(\lambda)/\partial_i L_\mathcal{N}(\lambda)$.

    This will be enough to conclude, by observing that:
    \begin{displaymath}
        \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
        \sim_{\lambda\rightarrow 0}
        \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
        {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
    \end{displaymath}
    and that an interior critical point of the ratio
    $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is characterized by:
    \begin{displaymath}
        \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
        = \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
        L_\mathcal{N}(\lambda)}
    \end{displaymath}

    Let us start by computing the derivatives of $F_\mathcal{N}$ and
    $L_\mathcal{N}$ with respect to
    the $i$-th component.

    For $F$, it suffices to look at the derivative of
    $P_\mathcal{N}^\lambda(S)$:
    \begin{displaymath}
        \partial_i P_\mathcal{N}^\lambda(S) = \left\{
            \begin{aligned}
                & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; i\in S \\
                & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
                i\in \mathcal{N}\setminus S \\
            \end{aligned}\right.
    \end{displaymath}

    Hence:
    \begin{multline*}
        \partial_i F_\mathcal{N} =
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\
        - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\
    \end{multline*}

    Now, using that every $S$ such that $i\in S$ can be uniquely written as
    $S'\cup\{i\}$, we can write:
    \begin{multline*}
        \partial_i F_\mathcal{N} =
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\
        - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\
    \end{multline*}

    Finally, by using the expression for the marginal contribution of $i$ to
    $S$:
    \begin{displaymath}
        \partial_i F_\mathcal{N}(\lambda) = 
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
        \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
    \end{displaymath}

    The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
    calculus and gives:
    \begin{displaymath}
        \partial_i L_\mathcal{N}(\lambda)
        = \T{x_i}\tilde{A}(\lambda)^{-1}x_i
    \end{displaymath}
    
    Using the following inequalities:
    \begin{gather*}
        \forall S\subseteq\mathcal{N}\setminus\{i\},\quad
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\
        \forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) 
        \geq P_\mathcal{N}^\lambda(S)\\
        \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
    \end{gather*}
    we get:
    \begin{align*}
        \partial_i F_\mathcal{N}(\lambda) 
        & \geq \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_\mathcal{N}^\lambda(S)
        \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
        & \geq \frac{1}{2}
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_\mathcal{N}^\lambda(S)
        \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
        &\hspace{-3.5em}+\frac{1}{2}
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_\mathcal{N}^\lambda(S\cup\{i\})
        \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
        &\geq \frac{1}{2}
        \sum_{S\subseteq\mathcal{N}}
        P_\mathcal{N}^\lambda(S)
        \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
    \end{align*}

    Using that $A(S)\geq I_d$ we get that:
    \begin{displaymath}
        \T{x_i}A(S)^{-1}x_i \leq 1 
    \end{displaymath}
    
    Moreover:
    \begin{displaymath}
        \forall x\leq 1,\; \log(1+x)\geq x
    \end{displaymath}

    Hence:
    \begin{displaymath}
        \partial_i F_\mathcal{N}(\lambda) \geq
        \frac{1}{2}
        \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
    \end{displaymath}
    
    Finally, using that the inverse is a matrix convex function over symmetric
    positive definite matrices:
    \begin{align*}
        \partial_i F_\mathcal{N}(\lambda) &\geq
        \frac{1}{2}
        \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\
        & \geq \frac{1}{2}
        \partial_i L_\mathcal{N}(\lambda)\qed
    \end{align*}
\end{proof}

\begin{lemma}\label{lemma:relaxation}
    We have:
    \begin{displaymath}
        OPT(L_\mathcal{N}, B) \leq 4 OPT(V,\mathcal{N},B)
        + 2\max_{i\in\mathcal{N}}V(i)
    \end{displaymath}
\end{lemma}

\begin{proof}
    Let us consider a feasible point $\lambda^*\in[0,1]^{|\mathcal{N}|}$ such that $L_\mathcal{N}(\lambda^*)
    = OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio}
    and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
    one fractional component such that:
    \begin{equation}\label{eq:e1}
        L_\mathcal{N}(\lambda^*) \leq 2
        F_\mathcal{N}(\bar{\lambda})
    \end{equation}

    Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
    denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
    Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th
    component and is a relaxation of the value function, we get:
    \begin{displaymath}
        F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
    \end{displaymath}

    Using the submodularity of $V$:
    \begin{displaymath}
        F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i)
    \end{displaymath}

    Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
    $V(S)\leq OPT(V,\mathcal{N}, B)$. Hence:
    \begin{equation}\label{eq:e2}
        F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B)
        + \max_{i\in\mathcal{N}} V(i)
    \end{equation}

    Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results.
\end{proof}