diff options
| author | Ben Green <ben@SEASITs-MacBook-Pro.local> | 2015-06-20 10:13:23 -0400 |
|---|---|---|
| committer | Ben Green <ben@SEASITs-MacBook-Pro.local> | 2015-06-20 10:13:23 -0400 |
| commit | f2891c93b96388442d44512e6c43b092153f8c25 (patch) | |
| tree | f85236ec90e1524a63731aec2ddbe017ab233fe5 /experiments/ml.c | |
| parent | 958c31ca10c4eed08da818b9e16d84ebfeb44c27 (diff) | |
| download | criminal_cascades-f2891c93b96388442d44512e6c43b092153f8c25.tar.gz | |
tried generating cascades and recovering parameters, still got the same
result where optimization minimizes alpha, delta as much as possible
Diffstat (limited to 'experiments/ml.c')
| -rw-r--r-- | experiments/ml.c | 470 |
1 files changed, 307 insertions, 163 deletions
diff --git a/experiments/ml.c b/experiments/ml.c index cdf4064..4c3f024 100644 --- a/experiments/ml.c +++ b/experiments/ml.c @@ -1326,7 +1326,6 @@ static char __pyx_k_range[] = "range"; static char __pyx_k_roots[] = "roots"; static char __pyx_k_throw[] = "throw"; static char __pyx_k_zeros[] = "zeros"; -static char __pyx_k_arange[] = "arange"; static char __pyx_k_import[] = "__import__"; static char __pyx_k_thresh[] = "thresh"; static char __pyx_k_float64[] = "float64"; @@ -1369,7 +1368,6 @@ static PyObject *__pyx_kp_s_Users_ben_Documents_Cascade_Pro; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_age; static PyObject *__pyx_n_s_alpha; -static PyObject *__pyx_n_s_arange; static PyObject *__pyx_n_s_args; static PyObject *__pyx_n_s_beta; static PyObject *__pyx_n_s_beta_add; @@ -1426,9 +1424,7 @@ static PyObject *__pyx_n_s_w1; static PyObject *__pyx_n_s_w2; static PyObject *__pyx_n_s_w3; static PyObject *__pyx_n_s_zeros; -static PyObject *__pyx_float__1; -static PyObject *__pyx_float__001; -static PyObject *__pyx_float_0_001; +static PyObject *__pyx_float_0_13; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__3; @@ -1501,22 +1497,22 @@ static __pyx_t_2ml_DTYPE_t __pyx_f_2ml_weight_success(int __pyx_v_dist, int __py * cdef DTYPE_t structural, temporal, result * structural = delta ** dist # <<<<<<<<<<<<<< * # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) - * # temporal = exp(-alpha*dt) * (exp(alpha)-1) + * temporal = exp(-alpha*dt) * (exp(alpha)-1.) */ __pyx_v_structural = pow(__pyx_v_delta, ((__pyx_t_2ml_DTYPE_t)__pyx_v_dist)); - /* "ml.pyx":19 + /* "ml.pyx":18 + * structural = delta ** dist * # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) - * # temporal = exp(-alpha*dt) * (exp(alpha)-1) - * temporal = 1 - exp(-alpha*dt) # <<<<<<<<<<<<<< + * temporal = exp(-alpha*dt) * (exp(alpha)-1.) # <<<<<<<<<<<<<< + * # temporal = 1 - exp(-alpha*dt) * if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' - * # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 */ - __pyx_v_temporal = (1.0 - exp(((-__pyx_v_alpha) * __pyx_v_dt))); + __pyx_v_temporal = (exp(((-__pyx_v_alpha) * __pyx_v_dt)) * (exp(__pyx_v_alpha) - 1.)); /* "ml.pyx":20 - * # temporal = exp(-alpha*dt) * (exp(alpha)-1) - * temporal = 1 - exp(-alpha*dt) + * temporal = exp(-alpha*dt) * (exp(alpha)-1.) + * # temporal = 1 - exp(-alpha*dt) * if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' # <<<<<<<<<<<<<< * # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 * result = log(structural * temporal) @@ -1937,8 +1933,8 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_t_2ml_DTYPE_t __pyx_t_23; __pyx_t_2ml_DTYPE_t __pyx_t_24; int __pyx_t_25; - double __pyx_t_26; - PyObject *(*__pyx_t_27)(PyObject *); + int __pyx_t_26; + double __pyx_t_27; int __pyx_t_28; int __pyx_lineno = 0; const char *__pyx_filename = NULL; @@ -1967,7 +1963,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * DTYPE_t beta, ll * list parents, failures, successes * n_roots, n_victims = len(root_victims), len(victims) # <<<<<<<<<<<<<< - * n_nodes = 11270 + * n_nodes = 100 * cdef: */ if (unlikely(__pyx_v_root_victims == Py_None)) { @@ -1986,14 +1982,14 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":45 * list parents, failures, successes * n_roots, n_victims = len(root_victims), len(victims) - * n_nodes = 11270 # <<<<<<<<<<<<<< + * n_nodes = 100 # <<<<<<<<<<<<<< * cdef: * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) */ - __pyx_v_n_nodes = 11270; + __pyx_v_n_nodes = 100; /* "ml.pyx":47 - * n_nodes = 11270 + * n_nodes = 100 * cdef: * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<< * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) @@ -2119,7 +2115,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_t_9 = ((PyArrayObject *)__pyx_t_3); { __Pyx_BufFmt_StackElem __pyx_stack[1]; - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs_nv.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs_nv.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) { __pyx_v_probs_nv = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf = NULL; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } else {__pyx_pybuffernd_probs_nv.diminfo[0].strides = __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_probs_nv.diminfo[0].shape = __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.shape[0]; @@ -2478,186 +2474,337 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "ml.pyx":76 + /* "ml.pyx":65 + * + * # loop through non-victims + * for i, parents in enumerate(non_victims.itervalues()): # <<<<<<<<<<<<<< + * # for each non victim node, compute the probability that all its + * # parents fail to infect it + */ + __pyx_t_10 = 0; + __pyx_t_1 = 0; + if (unlikely(__pyx_v_non_victims == Py_None)) { + PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues"); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + } + __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_3); + __pyx_t_3 = __pyx_t_5; + __pyx_t_5 = 0; + while (1) { + __pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11); + if (unlikely(__pyx_t_12 == 0)) break; + if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_5)); + __pyx_t_5 = 0; + __pyx_v_i = __pyx_t_10; + __pyx_t_10 = (__pyx_t_10 + 1); + + /* "ml.pyx":68 + * # for each non victim node, compute the probability that all its + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] + * probs_nv[i] = sum(failures) + */ + __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + + /* "ml.pyx":69 + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * probs_nv[i] = sum(failures) + * + */ + if (unlikely(__pyx_v_parents == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + } + __pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0; + for (;;) { + if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break; + #if CYTHON_COMPILING_IN_CPYTHON + __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #else + __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #endif + if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) { + PyObject* sequence = __pyx_t_6; + #if CYTHON_COMPILING_IN_CPYTHON + Py_ssize_t size = Py_SIZE(sequence); + #else + Py_ssize_t size = PySequence_Size(sequence); + #endif + if (unlikely(size != 5)) { + if (size > 5) __Pyx_RaiseTooManyValuesError(5); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + } + #if CYTHON_COMPILING_IN_CPYTHON + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_14 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_15 = PyTuple_GET_ITEM(sequence, 1); + __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2); + __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3); + __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4); + } else { + __pyx_t_14 = PyList_GET_ITEM(sequence, 0); + __pyx_t_15 = PyList_GET_ITEM(sequence, 1); + __pyx_t_16 = PyList_GET_ITEM(sequence, 2); + __pyx_t_17 = PyList_GET_ITEM(sequence, 3); + __pyx_t_18 = PyList_GET_ITEM(sequence, 4); + } + __Pyx_INCREF(__pyx_t_14); + __Pyx_INCREF(__pyx_t_15); + __Pyx_INCREF(__pyx_t_16); + __Pyx_INCREF(__pyx_t_17); + __Pyx_INCREF(__pyx_t_18); + #else + { + Py_ssize_t i; + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + for (i=0; i < 5; i++) { + PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(item); + *(temps[i]) = item; + } + } + #endif + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else { + Py_ssize_t index = -1; + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_19); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext; + for (index=0; index < 5; index++) { + PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L17_unpacking_failed; + __Pyx_GOTREF(item); + *(temps[index]) = item; + } + if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_20 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + goto __pyx_L18_unpacking_done; + __pyx_L17_unpacking_failed:; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + __pyx_t_20 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_L18_unpacking_done:; + } + __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; + __pyx_t_26 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_26 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; + __pyx_v_dist = __pyx_t_12; + __pyx_v_dt = __pyx_t_26; + __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16); + __pyx_t_16 = 0; + __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17); + __pyx_t_17 = 0; + __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18); + __pyx_t_18 = 0; + + /* "ml.pyx":68 + * # for each non victim node, compute the probability that all its + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] + * probs_nv[i] = sum(failures) + */ + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_w1); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_23 = __pyx_PyFloat_AsDouble(__pyx_v_w2); if (unlikely((__pyx_t_23 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_v_w3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_t_22, __pyx_t_23, __pyx_t_24)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_6); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + + /* "ml.pyx":69 + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * probs_nv[i] = sum(failures) + * + */ + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_XGOTREF(__pyx_cur_scope->__pyx_v_failures); + __Pyx_XDECREF_SET(__pyx_cur_scope->__pyx_v_failures, ((PyObject*)__pyx_t_5)); + __Pyx_GIVEREF(__pyx_t_5); + __pyx_t_5 = 0; + + /* "ml.pyx":70 + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + * for (dist, dt, w1, w2, w3) in parents] + * probs_nv[i] = sum(failures) # <<<<<<<<<<<<<< + * + * # print successes + */ + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_cur_scope->__pyx_v_failures); + __Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures); + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_26 = __pyx_v_i; + if (__pyx_t_26 < 0) __pyx_t_26 += __pyx_pybuffernd_probs_nv.diminfo[0].shape; + *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_26, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_24; + } + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "ml.pyx":80 * # cdef: * # np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() # add probability that all edges to victims fail # <<<<<<<<<<<<<< * ll += probs_nv.sum() # add probability that all edges to non_victims fail * */ - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = NULL; - if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) { - __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_5); - if (likely(__pyx_t_4)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); - __Pyx_INCREF(__pyx_t_4); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = NULL; + if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_5, function); + __Pyx_DECREF_SET(__pyx_t_4, function); } } - if (__pyx_t_4) { - __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_5) { + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else { - __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_ll = __pyx_t_22; + __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":77 + /* "ml.pyx":81 * # np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() # add probability that all edges to victims fail * ll += probs_nv.sum() # add probability that all edges to non_victims fail # <<<<<<<<<<<<<< * * # print 'probs', probs */ - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; - if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { - __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4); + if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) { + __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_4, function); + __Pyx_DECREF_SET(__pyx_t_5, function); } } if (__pyx_t_6) { - __pyx_t_5 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_6); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { - __pyx_t_5 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_ll = __pyx_t_22; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":80 + /* "ml.pyx":84 * * # print 'probs', probs * max_beta_add = float('-inf') # <<<<<<<<<<<<<< * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): + * for beta in [0.13]:#np.arange(0.001, .2, .002): */ - __pyx_t_26 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_26 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_4 = PyFloat_FromDouble(__pyx_t_26); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_v_max_beta_add = __pyx_t_4; - __pyx_t_4 = 0; + __pyx_t_27 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_27 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyFloat_FromDouble(__pyx_t_27); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __pyx_v_max_beta_add = __pyx_t_5; + __pyx_t_5 = 0; - /* "ml.pyx":82 + /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<< + * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ - __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_arange); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) { - __pyx_t_5 = __pyx_t_4; __Pyx_INCREF(__pyx_t_5); __pyx_t_1 = 0; - __pyx_t_27 = NULL; - } else { - __pyx_t_1 = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_27 = Py_TYPE(__pyx_t_5)->tp_iternext; if (unlikely(!__pyx_t_27)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = __pyx_tuple_; __Pyx_INCREF(__pyx_t_5); __pyx_t_2 = 0; for (;;) { - if (likely(!__pyx_t_27)) { - if (likely(PyList_CheckExact(__pyx_t_5))) { - if (__pyx_t_1 >= PyList_GET_SIZE(__pyx_t_5)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_4 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_4); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else { - if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_5)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_4); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } - } else { - __pyx_t_4 = __pyx_t_27(__pyx_t_5); - if (unlikely(!__pyx_t_4)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - break; - } - __Pyx_GOTREF(__pyx_t_4); - } - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (__pyx_t_2 >= 1) break; + #if CYTHON_COMPILING_IN_CPYTHON + __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #endif + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_beta = __pyx_t_22; + __pyx_v_beta = __pyx_t_24; - /* "ml.pyx":83 + /* "ml.pyx":87 * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): + * for beta in [0.13]:#np.arange(0.001, .2, .002): * thresh = log(beta/(1.-beta)) # <<<<<<<<<<<<<< * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) * roots = n_roots + len(probs[probs<thresh]) */ __pyx_v_thresh = log((__pyx_v_beta / (1. - __pyx_v_beta))); - /* "ml.pyx":85 + /* "ml.pyx":89 * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) * roots = n_roots + len(probs[probs<thresh]) # <<<<<<<<<<<<<< * * # add probability for realized edges and subtract probability these edges fail */ - __pyx_t_4 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __pyx_t_4 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_2 = PyObject_Length(__pyx_t_4); if (unlikely(__pyx_t_2 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_1 = PyObject_Length(__pyx_t_4); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_2); + __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_1); - /* "ml.pyx":88 + /* "ml.pyx":92 * * # add probability for realized edges and subtract probability these edges fail * beta_add = (probs[probs>=thresh]).sum() # <<<<<<<<<<<<<< * # add probability for the seeds and non-seeds - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) + * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) */ - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); - __pyx_t_6 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_GE); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_GE); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_6); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_6); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sum); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sum); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; @@ -2671,56 +2818,56 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_3) { - __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else { - __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF_SET(__pyx_v_beta_add, __pyx_t_4); __pyx_t_4 = 0; - /* "ml.pyx":90 + /* "ml.pyx":94 * beta_add = (probs[probs>=thresh]).sum() * # add probability for the seeds and non-seeds - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) # <<<<<<<<<<<<<< + * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) # <<<<<<<<<<<<<< * * if beta_add > max_beta_add: */ - __pyx_t_4 = PyFloat_FromDouble(((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1.0 - __pyx_v_beta))))); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyFloat_FromDouble(((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1. - __pyx_v_beta))))); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_v_beta_add, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_v_beta_add, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_beta_add, __pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":92 - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) + /* "ml.pyx":96 + * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) * * if beta_add > max_beta_add: # <<<<<<<<<<<<<< * max_beta = beta * max_roots = roots */ - __pyx_t_6 = PyObject_RichCompare(__pyx_v_beta_add, __pyx_v_max_beta_add, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_28 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_28 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyObject_RichCompare(__pyx_v_beta_add, __pyx_v_max_beta_add, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 96; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_28 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_28 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 96; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (__pyx_t_28) { - /* "ml.pyx":93 + /* "ml.pyx":97 * * if beta_add > max_beta_add: * max_beta = beta # <<<<<<<<<<<<<< * max_roots = roots * max_beta_add = beta_add */ - __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_max_beta, __pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":94 + /* "ml.pyx":98 * if beta_add > max_beta_add: * max_beta = beta * max_roots = roots # <<<<<<<<<<<<<< @@ -2729,7 +2876,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_max_roots = __pyx_v_roots; - /* "ml.pyx":95 + /* "ml.pyx":99 * max_beta = beta * max_roots = roots * max_beta_add = beta_add # <<<<<<<<<<<<<< @@ -2738,37 +2885,37 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __Pyx_INCREF(__pyx_v_beta_add); __Pyx_DECREF_SET(__pyx_v_max_beta_add, __pyx_v_beta_add); - goto __pyx_L15; + goto __pyx_L21; } - __pyx_L15:; + __pyx_L21:; - /* "ml.pyx":82 + /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<< + * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - /* "ml.pyx":98 + /* "ml.pyx":102 * # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots * * ll += max_beta_add # <<<<<<<<<<<<<< * roots = max_roots * beta = max_beta */ - __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_v_max_beta_add); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_v_max_beta_add); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_6); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_6); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_v_ll = __pyx_t_22; + __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":99 + /* "ml.pyx":103 * * ll += max_beta_add * roots = max_roots # <<<<<<<<<<<<<< @@ -2777,30 +2924,30 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_roots = __pyx_v_max_roots; - /* "ml.pyx":100 + /* "ml.pyx":104 * ll += max_beta_add * roots = max_roots * beta = max_beta # <<<<<<<<<<<<<< * # print n_nodes, n_roots, n_victims, max_i, roots * return (beta, roots, ll) */ - if (unlikely(!__pyx_v_max_beta)) { __Pyx_RaiseUnboundLocalError("max_beta"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_max_beta); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_beta = __pyx_t_22; + if (unlikely(!__pyx_v_max_beta)) { __Pyx_RaiseUnboundLocalError("max_beta"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_v_max_beta); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_v_beta = __pyx_t_24; - /* "ml.pyx":102 + /* "ml.pyx":106 * beta = max_beta * # print n_nodes, n_roots, n_victims, max_i, roots * return (beta, roots, ll) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); - __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_6); @@ -5127,7 +5274,6 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_age, __pyx_k_age, sizeof(__pyx_k_age), 0, 0, 1, 1}, {&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1}, - {&__pyx_n_s_arange, __pyx_k_arange, sizeof(__pyx_k_arange), 0, 0, 1, 1}, {&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1}, {&__pyx_n_s_beta, __pyx_k_beta, sizeof(__pyx_k_beta), 0, 0, 1, 1}, {&__pyx_n_s_beta_add, __pyx_k_beta_add, sizeof(__pyx_k_beta_add), 0, 0, 1, 1}, @@ -5202,14 +5348,14 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); - /* "ml.pyx":82 + /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<< + * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ - __pyx_tuple_ = PyTuple_Pack(3, __pyx_float_0_001, __pyx_float__1, __pyx_float__001); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_tuple_ = PyTuple_Pack(1, __pyx_float_0_13); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); @@ -5299,9 +5445,7 @@ static int __Pyx_InitCachedConstants(void) { static int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __pyx_float__1 = PyFloat_FromDouble(.1); if (unlikely(!__pyx_float__1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_float__001 = PyFloat_FromDouble(.001); if (unlikely(!__pyx_float__001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_float_0_001 = PyFloat_FromDouble(0.001); if (unlikely(!__pyx_float_0_001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_float_0_13 = PyFloat_FromDouble(0.13); if (unlikely(!__pyx_float_0_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} return 0; __pyx_L1_error:; return -1; |
