summaryrefslogtreecommitdiffstats
path: root/slides/BudgetFeasibleExperimentalDesign.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2013-03-03 21:32:23 -0800
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2013-03-03 21:32:23 -0800
commit2c022bdaaba14864c82aeae51eba5821b75dc506 (patch)
tree8f5693aa9a9b05196984277495ba53f340a284e2 /slides/BudgetFeasibleExperimentalDesign.tex
parentb6a88dc29d0a5a0598c68666408c6197fbc6fe0e (diff)
downloadrecommendation-2c022bdaaba14864c82aeae51eba5821b75dc506.tar.gz
done sun night
Diffstat (limited to 'slides/BudgetFeasibleExperimentalDesign.tex')
-rw-r--r--slides/BudgetFeasibleExperimentalDesign.tex91
1 files changed, 84 insertions, 7 deletions
diff --git a/slides/BudgetFeasibleExperimentalDesign.tex b/slides/BudgetFeasibleExperimentalDesign.tex
index ca60e04..98de9c2 100644
--- a/slides/BudgetFeasibleExperimentalDesign.tex
+++ b/slides/BudgetFeasibleExperimentalDesign.tex
@@ -126,7 +126,7 @@
\begin{center}
\begin{overprint}
- \onslide<1>\begin{center}$N$ users (``experiment subjects''), $[N]\equiv \{1,\ldots,N\}$ \end{center}
+ \onslide<1>\begin{center}$N$ ``experiment subjects'', $[N]\equiv \{1,\ldots,N\}$ \end{center}
\onslide<2>
\begin{center}
$x_i\in \reals^d$: public features (\eg, age, gender, height, \etc)
@@ -528,7 +528,7 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).}
\end{frame}
-\begin{frame}{Main Results}
+\begin{frame}{Our Main Results}
\begin{theorem}<2->
There exists deterministic, budget feasible, individually rational and truthful mechanism for
EDP which runs in polynomial time. Its
@@ -737,13 +737,62 @@ Key idea:\\ Replace $OPT$ with a \alert{relaxation $L^*$}:\pause
\end{frame}
\end{comment}
-\section{Extensions \& Generalization}
+\section{Generalization}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
-\begin{frame}{Generalization}
+\begin{frame}{Towards More General ML Tasks}
+ \begin{center}
+ \includegraphics<1>[scale=0.4]{st2.pdf}
+ \includegraphics<2>[scale=0.4]{st3.pdf}
+ \includegraphics<3>[scale=0.4]{st4.pdf}
+ \includegraphics<4-5>[scale=0.4]{st25.pdf}
+ \includegraphics<6->[scale=0.4]{st26.pdf}
+ \end{center}
+
+ \begin{overprint}
+ \onslide<1>
+ \begin{center}$N$ experiment subjects\end{center}
+ \onslide<2>
+ \begin{center}
+ $x_i\in \Omega$: public features
+ \end{center}
+ \onslide<3>
+ \begin{center}
+ $y_i\in \reals$: private data
+ \end{center}
+ \onslide<4-5>
+ \begin{center}
+ \textbf{Hypothesis.} There exists $h:\Omega\to \reals$ s.t.
+ % \begin{displaymath}
+ $y_i = h(x_i) + \varepsilon_i,$ %\quad
+ where $\varepsilon_i$ are independent.
+ \visible<5>{Examples: Logistic Regression, LDA, SVMs, \etc}
+ % \end{displaymath}
+ \end{center}
+%$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$
+ %\end{center}
+ \onslide<6>
+ \begin{center}
+ Experimenter {\tt E} wishes to learn $h$, and has a prior distribution over $$\mathcal{H}=\{\text{mappings from }\Omega\text{ to }\reals\}.$$
+ \end{center}
+ \onslide<7->\begin{center}
+\vspace*{-0.5cm}
+% \begin{block}
+%{Value function: Information gain}
+ \begin{displaymath}
+ V(S) = H(h) - H(h\mid y_i,i\in S),\quad S\subseteq[N]
+ \end{displaymath}
+ % \end{block}
+ \visible<8>{$V$ is submodular! [Krause and Guestrin 2009]}
+ \end{center}
+ \end{overprint}
+
+\end{frame}
+
+\begin{comment}
\begin{itemize}
\item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$
\pause
@@ -769,18 +818,46 @@ Key idea:\\ Replace $OPT$ with a \alert{relaxation $L^*$}:\pause
$V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism
\end{frame}
+\end{comment}
\begin{frame}{Conclusion}
\begin{itemize}
- \item Experimental design + Auction theory = powerful framework
+ \item Experimental design + Budget Feasible Mechanisms
\vspace{1cm}
\pause
- \item deterministic mechanism for the general case? other learning tasks?
+ \item Deterministic mechanism for other ML Tasks? General submodular functions?
\vspace{1cm}
\pause
- \item approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
+ \item Approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
\end{itemize}
\end{frame}
+\begin{frame}{}
+\vspace{\stretch{1}}
+\begin{center}
+Thank you!
+\end{center}
+\vspace{\stretch{1}}
+\end{frame}
+
+\begin{frame}{Non-Homotropic Prior}
+Recall that:
+\begin{align*}
+V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
+& = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T)
+\end{align*}
+What if $R\neq I$?
+\begin{theorem}
+ There exists a truthful, poly-time, and budget feasible mechanism for the objective
+ function $V$ above. Furthermore,
+ the algorithm computes a set $S^*$ such that:
+ \begin{displaymath}
+ OPT \leq
+ \frac{5e-1}{e-1}\frac{2}{\mu\log(1+1/\mu)}V(S^*) + 5.1
+\end{displaymath}
+where $\mu$ is the largest eigenvalue of $R$.
+\end{theorem}
+\end{frame}
+
\end{document}